» Articles » PMID: 23185016

Prefrontal D1 Dopamine Signaling is Required for Temporal Control

Overview
Specialty Science
Date 2012 Nov 28
PMID 23185016
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

Citing Articles

Long-term, cell type-specific effects of prenatal stress on dorsal striatum and relevant behaviors in mice.

Evans M, Hing B, Weber M, Maurer S, Baig A, Kim G bioRxiv. 2025; .

PMID: 39763907 PMC: 11703269. DOI: 10.1101/2024.12.27.627207.


State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons.

Basso V, Dobrossy M, Thompson L, Kirik D, Fuller H, Gates M Biology (Basel). 2024; 13(9).

PMID: 39336117 PMC: 11428604. DOI: 10.3390/biology13090690.


Alpha-Synuclein Pre-Formed Fibrils Injected into Prefrontal Cortex Primarily Spread to Cortical and Subcortical Structures.

Weber M, Kerr G, Thangavel R, Conlon M, Gumusoglu S, Gupta K J Parkinsons Dis. 2024; 14(1):81-94.

PMID: 38189765 PMC: 10836574. DOI: 10.3233/JPD-230129.


Impulse control disorder in Parkinson's disease is associated with abnormal frontal value signalling.

Tichelaar J, Sayali C, Helmich R, Cools R Brain. 2023; 146(9):3676-3689.

PMID: 37192341 PMC: 10473575. DOI: 10.1093/brain/awad162.


Glycolysis-enhancing α-adrenergic antagonists modify cognitive symptoms related to Parkinson's disease.

Weber M, Sivakumar K, Tabakovic E, Oya M, Aldridge G, Zhang Q NPJ Parkinsons Dis. 2023; 9(1):32.

PMID: 36864060 PMC: 9981768. DOI: 10.1038/s41531-023-00477-1.


References
1.
Staddon J . Interval timing: memory, not a clock. Trends Cogn Sci. 2005; 9(7):312-4. DOI: 10.1016/j.tics.2005.05.013. View

2.
Agid Y . Is the mesocortical dopaminergic system involved in Parkinson disease?. Neurology. 1980; 30(12):1326-30. DOI: 10.1212/wnl.30.12.1326. View

3.
Meck W . Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 2006; 1109(1):93-107. DOI: 10.1016/j.brainres.2006.06.031. View

4.
Narayanan N, Horst N, Laubach M . Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience. 2006; 139(3):865-76. DOI: 10.1016/j.neuroscience.2005.11.072. View

5.
Balci F, Papachristos E, Gallistel C, Brunner D, Gibson J, Shumyatsky G . Interval timing in genetically modified mice: a simple paradigm. Genes Brain Behav. 2007; 7(3):373-84. PMC: 2649730. DOI: 10.1111/j.1601-183X.2007.00348.x. View