Stojic S, Nadasdy Z
Front Psychol. 2024; 15:1402903.
PMID: 39359968
PMC: 11445672.
DOI: 10.3389/fpsyg.2024.1402903.
Latham A, Miller K, Pedersen R
Philos Trans R Soc Lond B Biol Sci. 2024; 379(1913):20230398.
PMID: 39278242
PMC: 11449163.
DOI: 10.1098/rstb.2023.0398.
Bozorgmehr A, Moayedi R, Sadeghi B, Molaei M, Brenner E
Perception. 2023; 52(9):662-669.
PMID: 37583299
PMC: 10469478.
DOI: 10.1177/03010066231190220.
Skye J, Bruss J, Herbet G, Tranel D, Boes A
Ann Neurol. 2023; 94(3):421-433.
PMID: 37183996
PMC: 10524450.
DOI: 10.1002/ana.26681.
Ross J, Balasubramaniam R
Front Integr Neurosci. 2022; 16:916220.
PMID: 35865808
PMC: 9294366.
DOI: 10.3389/fnint.2022.916220.
Higher-Order Conditioning: What Is Learnt and How it Is Expressed.
Honey R, Dwyer D
Front Behav Neurosci. 2021; 15:726218.
PMID: 34566595
PMC: 8462663.
DOI: 10.3389/fnbeh.2021.726218.
"Time Slows Down Whenever You Are Around" for Women but Not for Men.
Arantes J, Pinho M, Wearden J, Albuquerque P
Front Psychol. 2021; 12:641729.
PMID: 33889113
PMC: 8056007.
DOI: 10.3389/fpsyg.2021.641729.
Attention Does Not Affect the Speed of Subjective Time, but Whether Temporal Information Guides Performance: A Large-Scale Study of Intrinsically Motivated Timers in a Real-Time Strategy Game.
van der Mijn R, van Rijn H
Cogn Sci. 2021; 45(3):e12939.
PMID: 33755242
PMC: 8244047.
DOI: 10.1111/cogs.12939.
Dissociating Representations of Time and Number in Reinforcement-Rate Learning by Deletion of the GluA1 AMPA Receptor Subunit in Mice.
Austen J, Pickering C, Sprengel R, Sanderson D
Psychol Sci. 2021; 32(2):204-217.
PMID: 33395376
PMC: 7883001.
DOI: 10.1177/0956797620960392.
Individual variation in the vigor and form of Pavlovian conditioned responses: Analysis of a model system.
Honey R, Dwyer D, Iliescu A
Learn Motiv. 2020; 72:101658.
PMID: 33343040
PMC: 7733954.
DOI: 10.1016/j.lmot.2020.101658.
Motor timing training improves sustained attention performance but not fluid intelligence: near but not far transfer.
Karampela O, Madison G, Holm L
Exp Brain Res. 2020; 238(4):1051-1060.
PMID: 32206850
PMC: 7181559.
DOI: 10.1007/s00221-020-05780-4.
Modeling Interval Timing by Recurrent Neural Nets.
Raphan T, Dorokhin E, Delamater A
Front Integr Neurosci. 2019; 13:46.
PMID: 31555104
PMC: 6724642.
DOI: 10.3389/fnint.2019.00046.
Dynamic representation of time in brain states.
Bueno F, Morita V, de Camargo R, Reyes M, Caetano M, Cravo A
Sci Rep. 2017; 7:46053.
PMID: 28393850
PMC: 5385543.
DOI: 10.1038/srep46053.
Interval timing under a behavioral microscope: Dissociating motivational and timing processes in fixed-interval performance.
Daniels C, Sanabria F
Learn Behav. 2016; 45(1):29-48.
PMID: 27443193
DOI: 10.3758/s13420-016-0234-1.
Time Perception Mechanisms at Central Nervous System.
Fontes R, Ribeiro J, Gupta D, Machado D, Lopes-Junior F, Magalhaes F
Neurol Int. 2016; 8(1):5939.
PMID: 27127597
PMC: 4830363.
DOI: 10.4081/ni.2016.5939.
Memory bias in the temporal bisection point.
Levy J, Namboodiri V, Hussain Shuler M
Front Integr Neurosci. 2015; 9:44.
PMID: 26217198
PMC: 4493391.
DOI: 10.3389/fnint.2015.00044.
D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing.
Parker K, Chen K, Kingyon J, Cavanagh J, Narayanan N
J Neurosci. 2014; 34(50):16774-83.
PMID: 25505330
PMC: 4261101.
DOI: 10.1523/JNEUROSCI.2772-14.2014.
Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.
Ruiz M, Hong S, Hennig H, Altenmuller E, Kuhn A
Front Psychol. 2014; 5:1030.
PMID: 25309487
PMC: 4174744.
DOI: 10.3389/fpsyg.2014.01030.
Outlines of a multiple trace theory of temporal preparation.
Los S, Kruijne W, Meeter M
Front Psychol. 2014; 5:1058.
PMID: 25285088
PMC: 4168672.
DOI: 10.3389/fpsyg.2014.01058.
Visual tracking combined with hand-tracking improves time perception of moving stimuli.
Carlini A, French R
Sci Rep. 2014; 4:5363.
PMID: 24946842
PMC: 4064321.
DOI: 10.1038/srep05363.