» Articles » PMID: 23184449

Automated Fluorescence Lifetime Imaging Plate Reader and Its Application to Förster Resonant Energy Transfer Readout of Gag Protein Aggregation

Abstract

Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z' factors exceeding 0.6 are realised for this FLIM FRET assay.

Citing Articles

High-throughput, multi-parametric, and correlative fluorescence lifetime imaging.

Poudel C, Mela I, Kaminski C Methods Appl Fluoresc. 2020; 8(2):024005.

PMID: 32028271 PMC: 8208541. DOI: 10.1088/2050-6120/ab7364.


Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging .

Laine R, Sinnige T, Ma K, Haack A, Poudel C, Gaida P ACS Chem Biol. 2019; 14(7):1628-1636.

PMID: 31246415 PMC: 7612977. DOI: 10.1021/acschembio.9b00354.


Combining TIR and FRET in Molecular Test Systems.

Schneckenburger H, Weber P, Wagner M, Enderle S, Kalthof B, Schneider L Int J Mol Sci. 2019; 20(3).

PMID: 30717378 PMC: 6387052. DOI: 10.3390/ijms20030648.


Automated Fluorescence Lifetime Imaging High-Content Analysis of Förster Resonance Energy Transfer between Endogenously Labeled Kinetochore Proteins in Live Budding Yeast Cells.

Guo W, Kumar S, Gorlitz F, Garcia E, Alexandrov Y, Munro I SLAS Technol. 2019; 24(3):308-320.

PMID: 30629461 PMC: 6537140. DOI: 10.1177/2472630318819240.


Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.

Gorlitz F, Kelly D, Warren S, Alibhai D, West L, Kumar S J Vis Exp. 2017; (119).

PMID: 28190060 PMC: 5352269. DOI: 10.3791/55119.


References
1.
Esposito A, Dohm C, Bahr M, Wouters F . Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening. Mol Cell Proteomics. 2007; 6(8):1446-54. DOI: 10.1074/mcp.T700006-MCP200. View

2.
Ueyama H, Takagi M, Takenaka S . A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. J Am Chem Soc. 2002; 124(48):14286-7. DOI: 10.1021/ja026892f. View

3.
Goncalves V, Brannigan J, Thinon E, Olaleye T, Serwa R, Lanzarone S . A fluorescence-based assay for N-myristoyltransferase activity. Anal Biochem. 2011; 421(1):342-4. PMC: 3863716. DOI: 10.1016/j.ab.2011.10.013. View

4.
Szmacinski H, Lakowicz J . Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium. 1995; 18(1):64-75. PMC: 6938721. DOI: 10.1016/0143-4160(95)90046-2. View

5.
Ono A . HIV-1 Assembly at the Plasma Membrane: Gag Trafficking and Localization. Future Virol. 2009; 4(3):241-257. PMC: 2676728. DOI: 10.2217/fvl.09.4. View