» Articles » PMID: 32028271

High-throughput, Multi-parametric, and Correlative Fluorescence Lifetime Imaging

Overview
Publisher IOP Publishing
Specialties Biochemistry
Chemistry
Date 2020 Feb 7
PMID 32028271
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

In this review, we discuss methods and advancements in fluorescence lifetime imaging microscopy that permit measurements to be performed at faster speed and higher resolution than previously possible. We review fast single-photon timing technologies and the use of parallelized detection schemes to enable high-throughput and high content imaging applications. We appraise different technological implementations of fluorescence lifetime imaging, primarily in the time-domain. We also review combinations of fluorescence lifetime with other imaging modalities to capture multi-dimensional and correlative information from a single sample. Throughout the review, we focus on applications in biomedical research. We conclude with a critical outlook on current challenges and future opportunities in this rapidly developing field.

Citing Articles

High-throughput fluorescence lifetime imaging flow cytometry.

Kanno H, Hiramatsu K, Mikami H, Nakayashiki A, Yamashita S, Nagai A Nat Commun. 2024; 15(1):7376.

PMID: 39231964 PMC: 11375057. DOI: 10.1038/s41467-024-51125-y.


A time-correlated single photon counting SPAD array camera with a bespoke data-processing algorithm for lightsheet fluorescence lifetime imaging (FLIM) and FLIM videos.

Nedbal J, Mattioli Della Rocca F, Ivanova I, Allan A, Graham J, Walker R Sci Rep. 2024; 14(1):7247.

PMID: 38538638 PMC: 10973459. DOI: 10.1038/s41598-024-56122-1.


Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy.

Houston J, Valentino S, Bitton A Methods Mol Biol. 2024; 2779:323-351.

PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15.


Applications of machine learning in time-domain fluorescence lifetime imaging: a review.

Gouzou D, Taimori A, Haloubi T, Finlayson N, Wang Q, Hopgood J Methods Appl Fluoresc. 2023; 12(2).

PMID: 38055998 PMC: 10851337. DOI: 10.1088/2050-6120/ad12f7.


Large-scale capture of hidden fluorescent labels for training generalizable markerless motion capture models.

Butler D, Keim A, Ray S, Azim E Nat Commun. 2023; 14(1):5866.

PMID: 37752123 PMC: 10522643. DOI: 10.1038/s41467-023-41565-3.


References
1.
Giacomelli M, Sheikine Y, Vardeh H, Connolly J, Fujimoto J . Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging. Biomed Opt Express. 2015; 6(11):4317-25. PMC: 4646541. DOI: 10.1364/BOE.6.004317. View

2.
Arlt J, Tyndall D, Rae B, Li D, Richardson J, Henderson R . A study of pile-up in integrated time-correlated single photon counting systems. Rev Sci Instrum. 2013; 84(10):103105. DOI: 10.1063/1.4824196. View

3.
Suhling K, Siegel J, Lanigan P, Leveque-Fort S, Webb S, Phillips D . Time-resolved fluorescence anisotropy imaging applied to live cells. Opt Lett. 2004; 29(6):584-6. DOI: 10.1364/ol.29.000584. View

4.
Poland S, Chan G, Levitt J, Krstajic N, Erdogan A, Henderson R . Multifocal multiphoton volumetric imaging approach for high-speed time-resolved Förster resonance energy transfer imaging in vivo. Opt Lett. 2018; 43(24):6057-6060. PMC: 6410918. DOI: 10.1364/OL.43.006057. View

5.
Esposito A, Bader A, Schlachter S, van den Heuvel D, Kaminski Schierle G, Venkitaraman A . Design and application of a confocal microscope for spectrally resolved anisotropy imaging. Opt Express. 2011; 19(3):2546-55. DOI: 10.1364/OE.19.002546. View