» Articles » PMID: 22958819

Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2012 Sep 11
PMID 22958819
Citations 259
Authors
Affiliations
Soon will be listed here.
Abstract

Monitoring neuronal electrical activity using fluorescent protein-based voltage sensors has been limited by small response magnitudes and slow kinetics of existing probes. Here we report the development of a fluorescent protein voltage sensor, named ArcLight, and derivative probes that exhibit large changes in fluorescence intensity in response to voltage changes. ArcLight consists of the voltage-sensing domain of Ciona intestinalis voltage-sensitive phosphatase and super ecliptic pHluorin that carries the point mutation A227D. The fluorescence intensity of ArcLight A242 decreases by 35% in response to a 100 mV depolarization when measured in HEK293 cells, which is more than five times larger than the signals from previously reported fluorescent protein voltage sensors. We show that the combination of signal size and response speed of these new probes allows the reliable detection of single action potentials and excitatory potentials in individual neurons and dendrites.

Citing Articles

Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.

Nguyen T, Shalaby R, Lee E, Kim S, Ro Kim Y, Kim S Neurophotonics. 2025; 12(Suppl 1):S14608.

PMID: 40017464 PMC: 11867703. DOI: 10.1117/1.NPh.12.S1.S14608.


A microfluidic sucrose gap platform using trilaminar flow with on-chip switching and novel calibration: Challenges and limitations.

Dungan J, Mathews J, Levin M, Koomson V Biomicrofluidics. 2025; 19(1):014102.

PMID: 39944291 PMC: 11813541. DOI: 10.1063/5.0246160.


An improved FLARE system for recording and manipulating neuronal activity.

Zhou G, Li R, Bartolik O, Ma Y, Wan W, Meng J bioRxiv. 2025; .

PMID: 39868209 PMC: 11760262. DOI: 10.1101/2025.01.13.632875.


Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders.

Yang Z, Teaney N, Buttermore E, Sahin M, Afshar-Saber W Front Neurosci. 2025; 18:1524577.

PMID: 39844857 PMC: 11750789. DOI: 10.3389/fnins.2024.1524577.


Adaptation to visual sparsity enhances responses to isolated stimuli.

Gou T, Matulis C, Clark D Curr Biol. 2024; 34(24):5697-5713.e8.

PMID: 39577424 PMC: 11834764. DOI: 10.1016/j.cub.2024.10.053.


References
1.
Lundby A, Mutoh H, Dimitrov D, Akemann W, Knopfel T . Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One. 2008; 3(6):e2514. PMC: 2429971. DOI: 10.1371/journal.pone.0002514. View

2.
Miesenbock G, De Angelis D, Rothman J . Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998; 394(6689):192-5. DOI: 10.1038/28190. View

3.
Perron A, Mutoh H, Launey T, Knopfel T . Red-shifted voltage-sensitive fluorescent proteins. Chem Biol. 2010; 16(12):1268-77. PMC: 2818747. DOI: 10.1016/j.chembiol.2009.11.014. View

4.
Jin L, Baker B, Mealer R, Cohen L, Pieribone V, Pralle A . Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. J Neurosci Methods. 2011; 199(1):1-9. PMC: 3281265. DOI: 10.1016/j.jneumeth.2011.03.028. View

5.
Brejc K, Sixma T, Kitts P, Kain S, Tsien R, Ormo M . Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A. 1997; 94(6):2306-11. PMC: 20083. DOI: 10.1073/pnas.94.6.2306. View