» Articles » PMID: 18679801

Genetically Encoded Fluorescent Sensors of Membrane Potential

Overview
Journal Brain Cell Biol
Publisher Springer
Specialties Cell Biology
Neurology
Date 2008 Aug 6
PMID 18679801
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome the drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal, a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Here we critically review the current status of these developments.

Citing Articles

Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.

Gest A, Sahan A, Zhong Y, Lin W, Mehta S, Zhang J Chem Rev. 2024; 124(22):12573-12660.

PMID: 39535501 PMC: 11613326. DOI: 10.1021/acs.chemrev.4c00293.


Hydrophobic residues in S1 modulate enzymatic function and voltage sensing in voltage-sensing phosphatase.

Rayaprolu V, Miettinen H, Baker W, Young V, Fisher M, Mueller G J Gen Physiol. 2024; 156(7).

PMID: 38771271 PMC: 11109755. DOI: 10.1085/jgp.202313467.


Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.

Sanchez C, Ramirez A, Hodgson L J Microsc. 2024; .

PMID: 38357769 PMC: 11324865. DOI: 10.1111/jmi.13270.


Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight.

Leong L, Storace D Neurophotonics. 2024; 11(3):033402.

PMID: 38288247 PMC: 10823906. DOI: 10.1117/1.NPh.11.3.033402.


Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications.

Fenno L, Levy R, Yizhar O Methods Mol Biol. 2022; 2501:289-310.

PMID: 35857234 DOI: 10.1007/978-1-0716-2329-9_14.


References
1.
Lundby A, Mutoh H, Dimitrov D, Akemann W, Knopfel T . Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One. 2008; 3(6):e2514. PMC: 2429971. DOI: 10.1371/journal.pone.0002514. View

2.
Long S, Campbell E, MacKinnon R . Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005; 309(5736):897-903. DOI: 10.1126/science.1116269. View

3.
Kalyanaraman B, Feix J, Sieber F, Thomas J, Girotti A . Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci U S A. 1987; 84(9):2999-3003. PMC: 304788. DOI: 10.1073/pnas.84.9.2999. View

4.
Pathak M, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S . Closing in on the resting state of the Shaker K(+) channel. Neuron. 2007; 56(1):124-40. DOI: 10.1016/j.neuron.2007.09.023. View

5.
Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R . The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003; 423(6935):42-8. DOI: 10.1038/nature01581. View