» Articles » PMID: 21507944

Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Apr 22
PMID 21507944
Citations 122
Authors
Affiliations
Soon will be listed here.
Abstract

In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.

Citing Articles

Biochemical plasticity of the Escherichia coli CRISPR Cascade revealed by in vitro reconstitution of Cascade activities from purified Cas proteins.

Lemak S, Brown G, Makarova K, Koonin E, Yakunin A FEBS J. 2024; 291(23):5177-5194.

PMID: 39375921 PMC: 11617276. DOI: 10.1111/febs.17295.


Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems.

Xia P, Dutta A, Gupta K, Batish M, Parashar V J Biol Chem. 2022; 298(2):101591.

PMID: 35038453 PMC: 8844856. DOI: 10.1016/j.jbc.2022.101591.


Cyclic Tetra-Adenylate (cA) Recognition by Csa3; Implications for an Integrated Class 1 CRISPR-Cas Immune Response in .

Charbonneau A, Eckert D, Gauvin C, Lintner N, Lawrence C Biomolecules. 2021; 11(12).

PMID: 34944496 PMC: 8699464. DOI: 10.3390/biom11121852.


Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection.

Hillary V, Ignacimuthu S, Ceasar S Expert Rev Mol Diagn. 2021; 21(11):1179-1189.

PMID: 34409907 PMC: 8607542. DOI: 10.1080/14737159.2021.1970535.


Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair.

Thompson M, Sobol R, Prakash A Biology (Basel). 2021; 10(6).

PMID: 34198612 PMC: 8232306. DOI: 10.3390/biology10060530.


References
1.
Kraft P, Kummel D, Oeckinghaus A, Gauss G, Wiedenheft B, Young M . Structure of D-63 from sulfolobus spindle-shaped virus 1: surface properties of the dimeric four-helix bundle suggest an adaptor protein function. J Virol. 2004; 78(14):7438-42. PMC: 434073. DOI: 10.1128/JVI.78.14.7438-7442.2004. View

2.
Beloglazova N, Brown G, Zimmerman M, Proudfoot M, Makarova K, Kudritska M . A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem. 2008; 283(29):20361-71. PMC: 2459268. DOI: 10.1074/jbc.M803225200. View

3.
Wang R, Preamplume G, Terns M, Terns R, Li H . Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure. 2011; 19(2):257-64. PMC: 3154685. DOI: 10.1016/j.str.2010.11.014. View

4.
Karginov F, Hannon G . The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell. 2010; 37(1):7-19. PMC: 2819186. DOI: 10.1016/j.molcel.2009.12.033. View

5.
Murshudov G, Vagin A, Dodson E . Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240-55. DOI: 10.1107/S0907444996012255. View