» Articles » PMID: 22754039

Diurnal Rhythms in Blood Cell Populations and the Effect of Acute Sleep Deprivation in Healthy Young Men

Overview
Journal Sleep
Specialty Psychiatry
Date 2012 Jul 4
PMID 22754039
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Study Objectives: The sleep/wake cycle is accompanied by changes in circulating numbers of immune cells. The goal of this study was to provide an in-depth characterization of diurnal rhythms in different blood cell populations and to investigate the effect of acute sleep deprivation on the immune system, as an indicator of the body's acute stress response.

Design: Observational within-subject design.

Setting: Home environment and Clinical Research Centre.

Participants: 15 healthy male participants aged 23.7 ± 5.4 (standard deviation) yr.

Interventions: Total sleep deprivation.

Measurements And Results: Diurnal rhythms of several blood cell populations were assessed under a normal sleep/wake cycle followed by 29 hr of extended wakefulness. The effect of condition (sleep versus sleep deprivation) on peak time and amplitude was investigated. Interindividual variation of, and the level of correlation between, the different cell populations was assessed. Comprehensive nonlinear curve fitting showed significant diurnal rhythms for all blood cell types investigated, with CD4 (naïve) cells exhibiting the most robust rhythms independent of condition. For those participants exhibiting significant diurnal rhythms in blood cell populations, only the amplitude of the granulocyte rhythm was significantly reduced by sleep deprivation. Granulocytes were the most diverse population, being most strongly affected by condition, and showed the lowest correlations with any other given cell type while exhibiting the largest interindividual variation in abundance.

Conclusions: Granulocyte levels and diurnal rhythmicity are directly affected by acute sleep deprivation; these changes mirror the body's immediate immune response upon exposure to stress.

Citing Articles

The circadian rhythm as therapeutic target in inflammatory bowel disease.

Post Z, Zilberstein N, Keshavarzian A J Can Assoc Gastroenterol. 2025; 8(Suppl 2):S27-S35.

PMID: 39990511 PMC: 11842906. DOI: 10.1093/jcag/gwae027.


Haematology dimension reduction, a large scale application to regular care haematology data.

Joosse H, Chumsaeng-Reijers C, Huisman A, Hoefer I, van Solinge W, Haitjema S BMC Med Inform Decis Mak. 2025; 25(1):75.

PMID: 39939843 PMC: 11823074. DOI: 10.1186/s12911-025-02899-8.


Systematic review: differences in complete blood count component rhythms.

Busza A, Sharma V, Ferguson K, Fawcett A, Knoll J, Iwanaszko M Sleep Adv. 2024; 5(1):zpae086.

PMID: 39735739 PMC: 11672111. DOI: 10.1093/sleepadvances/zpae086.


Exposing 24-hour cycles in bile acids of male humans.

Bello A, Sarafian M, Wimborne E, Middleton B, Revell V, Raynaud F Nat Commun. 2024; 15(1):10014.

PMID: 39562795 PMC: 11576969. DOI: 10.1038/s41467-024-53673-9.


The effect of sleep and its restriction on selected inflammatory parameters.

Sochal M, Ditmer M, Turkiewicz S, Karuga F, Bialasiewicz P, Gabryelska A Sci Rep. 2024; 14(1):17379.

PMID: 39075123 PMC: 11286918. DOI: 10.1038/s41598-024-68498-1.


References
1.
Benedict C, Dimitrov S, Marshall L, Born J . Sleep enhances serum interleukin-7 concentrations in humans. Brain Behav Immun. 2007; 21(8):1058-62. DOI: 10.1016/j.bbi.2007.04.004. View

2.
Bass J, Takahashi J . Circadian integration of metabolism and energetics. Science. 2010; 330(6009):1349-54. PMC: 3756146. DOI: 10.1126/science.1195027. View

3.
Kronfol Z, Nair M, Zhang Q, Hill E, Brown M . Circadian immune measures in healthy volunteers: relationship to hypothalamic-pituitary-adrenal axis hormones and sympathetic neurotransmitters. Psychosom Med. 1997; 59(1):42-50. DOI: 10.1097/00006842-199701000-00006. View

4.
Mullington J, Simpson N, Meier-Ewert H, Haack M . Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab. 2010; 24(5):775-84. PMC: 3548567. DOI: 10.1016/j.beem.2010.08.014. View

5.
Bollinger T, Bollinger A, Oster H, Solbach W . Sleep, immunity, and circadian clocks: a mechanistic model. Gerontology. 2010; 56(6):574-80. DOI: 10.1159/000281827. View