» Articles » PMID: 22685165

Fe Sparing and Fe Recycling Contribute to Increased Superoxide Dismutase Capacity in Iron-starved Chlamydomonas Reinhardtii

Overview
Journal Plant Cell
Specialties Biology
Cell Biology
Date 2012 Jun 12
PMID 22685165
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Fe deficiency is one of several abiotic stresses that impacts plant metabolism because of the loss of function of Fe-containing enzymes in chloroplasts and mitochondria, including cytochromes, FeS proteins, and Fe superoxide dismutase (FeSOD). Two pathways increase the capacity of the Chlamydomonas reinhardtii chloroplast to detoxify superoxide during Fe limitation stress. In one pathway, MSD3 is upregulated at the transcriptional level up to 10(3)-fold in response to Fe limitation, leading to synthesis of a previously undiscovered plastid-specific MnSOD whose identity we validated immunochemically. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, heme-containing cytochrome f, diiron magnesium protoporphyrin monomethyl ester cyclase, and Fe2S2-containing ferredoxin, demonstrating prioritized allocation of Fe within the chloroplast. Maintenance of FeSOD occurs, after an initial phase of degradation, by de novo resynthesis in the absence of extracellular Fe, suggesting the operation of salvage mechanisms for intracellular recycling and reallocation.

Citing Articles

Micronutrient deficiency-induced oxidative stress in plants.

Gupta R, Verma N, Tewari R Plant Cell Rep. 2024; 43(9):213.

PMID: 39133336 DOI: 10.1007/s00299-024-03297-6.


Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium.

Liu H, Urzica E, Gallaher S, Schmollinger S, Blaby-Haas C, Iwai M Photosynth Res. 2024; 161(3):213-232.

PMID: 39017982 DOI: 10.1007/s11120-024-01103-8.


Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content.

McQuillan J, Cutolo E, Evans C, Pandhal J Biotechnol Biofuels Bioprod. 2023; 16(1):166.

PMID: 37925447 PMC: 10625216. DOI: 10.1186/s13068-023-02421-0.


Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris.

Zhao B, Zhang Y, Zhang S, Hu T, Guo Y Appl Microbiol Biotechnol. 2023; 107(24):7403-7416.

PMID: 37773218 DOI: 10.1007/s00253-023-12792-x.


Cellular response of to a solid surface culture environment.

Miyauchi H, Ishikawa T, Hirakawa Y, Sudou A, Okada K, Hijikata A Front Plant Sci. 2023; 14:1175080.

PMID: 37342150 PMC: 10277731. DOI: 10.3389/fpls.2023.1175080.


References
1.
Allen M, Kropat J, Merchant S . Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii. Photochem Photobiol. 2008; 84(6):1336-42. DOI: 10.1111/j.1751-1097.2008.00440.x. View

2.
Allen M, Del Campo J, Kropat J, Merchant S . FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell. 2007; 6(10):1841-52. PMC: 2043389. DOI: 10.1128/EC.00205-07. View

3.
Dumas R, Joyard J, Douce R . Purification and characterization of acetohydroxyacid reductoisomerase from spinach chloroplasts. Biochem J. 1989; 262(3):971-6. PMC: 1133368. DOI: 10.1042/bj2620971. View

4.
Reyda M, Dippold R, Dotson M, Jarrett J . Loss of iron-sulfur clusters from biotin synthase as a result of catalysis promotes unfolding and degradation. Arch Biochem Biophys. 2007; 471(1):32-41. PMC: 2293955. DOI: 10.1016/j.abb.2007.12.001. View

5.
Phee B, Cho J, Park S, Jung J, Lee Y, Jeon J . Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics. 2004; 4(11):3560-8. DOI: 10.1002/pmic.200400982. View