» Articles » PMID: 16601688

The Effects of Mitochondrial Iron Homeostasis on Cofactor Specificity of Superoxide Dismutase 2

Overview
Journal EMBO J
Date 2006 Apr 8
PMID 16601688
Citations 67
Authors
Affiliations
Soon will be listed here.
Abstract

Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the differential bioavailability of these ions within mitochondria. The bulk of mitochondrial iron is normally unavailable to SOD2, but when mitochondrial iron homeostasis is disrupted, for example, by mutations in S. cerevisiae mtm1, ssq1 and grx5, iron accumulates in a reactive form that potently competes with manganese for binding to SOD2, inactivating the enzyme. Studies in mtm1 mutants indicate that iron inactivation of SOD2 involves the Mrs3p/Mrs4p mitochondrial carriers and iron-binding frataxin (Yfh1p). A small pool of SOD2-reactive iron also exists under normal iron homeostasis conditions and binds SOD2 when mitochondrial manganese is low. The ability to control this reactive pool of iron is critical to maintaining SOD2 activity and has important potential implications for oxidative stress in disorders of iron overload.

Citing Articles

Converging Roles of the Metal Transporter SMF11 and the Ferric Reductase FRE1 in Iron Homeostasis of Candida albicans.

Patel N, David M, Yang S, Garg R, Zhao H, Cormack B Mol Microbiol. 2024; 122(6):879-895.

PMID: 39529282 PMC: 11659026. DOI: 10.1111/mmi.15326.


Metal Uptake by Mitochondrial Carrier Family Proteins Using Lactococcus lactis.

Zhu X, Oldfather L, Cobine P Methods Mol Biol. 2024; 2839:99-110.

PMID: 39008250 DOI: 10.1007/978-1-0716-4043-2_6.


Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress.

Gupta S, Campos L, Schmidt K Genetics. 2023; 225(2).

PMID: 37638880 PMC: 10550321. DOI: 10.1093/genetics/iyad147.


Adaptation of Species to High-Iron Conditions.

Sorribes-Dauden R, Jorda T, Peris D, Martinez-Pastor M, Puig S Int J Mol Sci. 2022; 23(22).

PMID: 36430442 PMC: 9693265. DOI: 10.3390/ijms232213965.


Manganese-driven CoQ deficiency.

Diessl J, Berndtsson J, Broeskamp F, Habernig L, Kohler V, Vazquez-Calvo C Nat Commun. 2022; 13(1):6061.

PMID: 36229432 PMC: 9563070. DOI: 10.1038/s41467-022-33641-x.


References
1.
Foury F, Roganti T . Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem. 2002; 277(27):24475-83. DOI: 10.1074/jbc.M111789200. View

2.
Li L, Kaplan J . Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem. 1997; 272(45):28485-93. DOI: 10.1074/jbc.272.45.28485. View

3.
Muhlenhoff U, Stadler J, Richhardt N, Seubert A, Eickhorst T, Schweyen R . A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem. 2003; 278(42):40612-20. DOI: 10.1074/jbc.M307847200. View

4.
Luk E, Culotta V . Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem. 2001; 276(50):47556-62. DOI: 10.1074/jbc.M108923200. View

5.
Lill R, Muhlenhoff U . Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci. 2005; 30(3):133-41. DOI: 10.1016/j.tibs.2005.01.006. View