» Articles » PMID: 22555243

Elucidating Membrane Structure and Protein Behavior Using Giant Plasma Membrane Vesicles

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2012 May 5
PMID 22555243
Citations 243
Authors
Affiliations
Soon will be listed here.
Abstract

The observation of phase separation in intact plasma membranes isolated from live cells is a breakthrough for research into eukaryotic membrane lateral heterogeneity, specifically in the context of membrane rafts. These observations are made in giant plasma membrane vesicles (GPMVs), which can be isolated by chemical vesiculants from a variety of cell types and microscopically observed using basic reagents and equipment available in any cell biology laboratory. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. This protocol describes the methods to prepare and isolate the vesicles, equipment to observe them under temperature-controlled conditions and three examples of fluorescence analysis: (i) fluorescence spectroscopy with an environment-sensitive dye (laurdan); (ii) two-photon microscopy of the same dye; and (iii) quantitative confocal microscopy to determine component partitioning between raft and nonraft phases. GPMV preparation and isolation, including fluorescent labeling and observation, can be accomplished within 4 h.

Citing Articles

Sorting of complex sphingolipids within the cellular endomembrane systems.

Svistunov V, Ehrmann K, Lencer W, Schmieder S Front Cell Dev Biol. 2025; 12:1490870.

PMID: 40078962 PMC: 11897003. DOI: 10.3389/fcell.2024.1490870.


Cholesterol inhibits assembly and oncogenic activation of the EphA2 receptor.

Schuck R, Ward A, Sahoo A, Rybak J, Pyron R, Trybala T Commun Biol. 2025; 8(1):411.

PMID: 40069393 PMC: 11897322. DOI: 10.1038/s42003-025-07786-6.


Measuring plasma membrane fluidity using confocal microscopy.

Carravilla P, Andronico L, Schlegel J, Urem Y, Sjule E, Ragaller F Nat Protoc. 2025; .

PMID: 39972239 DOI: 10.1038/s41596-024-01122-8.


Temperature dependence of membrane viscosity of ternary lipid GUV with L domains.

Tanaka J, Haga K, Urakami N, Imai M, Sakuma Y Biophys J. 2025; 124(5):818-828.

PMID: 39905732 PMC: 11897551. DOI: 10.1016/j.bpj.2025.01.024.


Influence of the glycocalyx on the size and mechanical properties of plasma membrane-derived vesicles.

Jani P, Colville M, Park S, Ha Y, Paszek M, Abbott N Soft Matter. 2024; 21(3):463-475.

PMID: 39717887 PMC: 11667464. DOI: 10.1039/d4sm01317d.


References
1.
Kim H, Choo H, Jung S, Ko Y, Park W, Jeon S . A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem. 2007; 8(5):553-9. DOI: 10.1002/cbic.200700003. View

2.
Levental I, Lingwood D, Grzybek M, Coskun U, Simons K . Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A. 2010; 107(51):22050-4. PMC: 3009825. DOI: 10.1073/pnas.1016184107. View

3.
Keller H, Lorizate M, Schwille P . PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem. 2009; 10(16):2805-12. DOI: 10.1002/cphc.200900598. View

4.
Fridriksson E, Shipkova P, Sheets E, Holowka D, Baird B, McLafferty F . Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry. 1999; 38(25):8056-63. DOI: 10.1021/bi9828324. View

5.
Kahya N, Brown D, Schwille P . Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry. 2005; 44(20):7479-89. DOI: 10.1021/bi047429d. View