» Articles » PMID: 38965227

Enhancing Extracellular Vesicle Cargo Loading and Functional Delivery by Engineering Protein-lipid Interactions

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Jul 4
PMID 38965227
Authors
Affiliations
Soon will be listed here.
Abstract

Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.

Citing Articles

Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases.

Lerussi G, Villagrasa-Araya V, Molto-Abad M, Del Toro M, Pintos-Morell G, Seras-Franzoso J Life (Basel). 2025; 15(1).

PMID: 39860010 PMC: 11766495. DOI: 10.3390/life15010070.


Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis and release regulators.

Kunitake K, Mizuno T, Hattori K, Oneyama C, Kamiya M, Ota S Nat Commun. 2024; 15(1):9777.

PMID: 39562573 PMC: 11577021. DOI: 10.1038/s41467-024-53736-x.


HaloTag display enables quantitative single-particle characterisation and functionalisation of engineered extracellular vesicles.

Mitrut R, Stranford D, DiBiase B, Chan J, Bailey M, Luo M J Extracell Vesicles. 2024; 13(7):e12469.

PMID: 38965984 PMC: 11224594. DOI: 10.1002/jev2.12469.


Hydrophobic mismatch drives self-organization of designer proteins into synthetic membranes.

Peruzzi J, Steinkuhler J, Vu T, Gunnels T, Hu V, Lu P Nat Commun. 2024; 15(1):3162.

PMID: 38605024 PMC: 11009411. DOI: 10.1038/s41467-024-47163-1.

References
1.
Mohamed A, Shah A, Chen D, Hill M . RaftProt V2: understanding membrane microdomain function through lipid raft proteomes. Nucleic Acids Res. 2018; 47(D1):D459-D463. PMC: 6323919. DOI: 10.1093/nar/gky948. View

2.
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee J, Lotvall J . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9(6):654-9. DOI: 10.1038/ncb1596. View

3.
Thery C, Witwer K, Aikawa E, Alcaraz M, Anderson J, Andriantsitohaina R . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2019; 7(1):1535750. PMC: 6322352. DOI: 10.1080/20013078.2018.1535750. View

4.
Villamizar O, Waters S, Scott T, Grepo N, Jaffe A, Morris K . Mesenchymal Stem Cell exosome delivered Zinc Finger Protein activation of cystic fibrosis transmembrane conductance regulator. J Extracell Vesicles. 2021; 10(3):e12053. PMC: 7825549. DOI: 10.1002/jev2.12053. View

5.
Sezgin E, Levental I, Mayor S, Eggeling C . The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017; 18(6):361-374. PMC: 5500228. DOI: 10.1038/nrm.2017.16. View