» Articles » PMID: 22529368

Photothermic Regulation of Gene Expression Triggered by Laser-induced Carbon Nanohorns

Abstract

The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue. Biological tissue is relatively transparent to light inside the diagnostic window at wavelengths of 650-1,100 nm. Here we present a unique optical biotechnological method using carbon nanohorn (CNH) that transforms energy from diagnostic window laser light to heat to control the expression of various genes. We report that with this method, laser irradiation within the diagnostic window resulted in effective heat generation and thus caused heat shock promoter-mediated gene expression. This study provides an important step forward in the development of light-manipulated gene expression technologies.

Citing Articles

Rheological Behavior of an Aqueous Suspension of Oxidized Carbon Nanohorn (CNHox).

Moteki A, Kobayashi M Nanomaterials (Basel). 2024; 14(15).

PMID: 39120352 PMC: 11314248. DOI: 10.3390/nano14151247.


Carbonaceous Nanomaterials for Phototherapy of Cancer.

Gupta T, Pawar B, Vasdev N, Pawar V, Kumar Tekade R Technol Cancer Res Treat. 2023; 22:15330338231186388.

PMID: 37461375 PMC: 10357070. DOI: 10.1177/15330338231186388.


Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems.

Oyama K, Ishii S, Suzuki M Biophys Rev. 2022; 14(1):41-54.

PMID: 35340595 PMC: 8921355. DOI: 10.1007/s12551-021-00854-1.


A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration.

Falguera Uceda M, Sanchez-Casanova S, Escudero-Duch C, Vilaboa N Pharmaceutics. 2022; 14(1).

PMID: 35057028 PMC: 8781797. DOI: 10.3390/pharmaceutics14010132.


Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes.

Yu Y, Yang X, Reghu S, Kaul S, Wadhwa R, Miyako E Nat Commun. 2020; 11(1):4117.

PMID: 32807785 PMC: 7431860. DOI: 10.1038/s41467-020-17768-3.


References
1.
Miyako E, Nagata H, Funahashi R, Hirano K, Hirotsu T . Light-driven thermoelectric conversion based on a carbon nanotube-ionic liquid gel composite. ChemSusChem. 2009; 2(8):740-2. DOI: 10.1002/cssc.200900069. View

2.
Rylander M, Feng Y, Zimmermann K, Diller K . Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int J Hyperthermia. 2010; 26(8):748-64. DOI: 10.3109/02656736.2010.486778. View

3.
Sarkar S, Zimmermann K, Leng W, Vikesland P, Zhang J, Dorn H . Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method. Ann Biomed Eng. 2011; 39(6):1745-58. DOI: 10.1007/s10439-011-0268-7. View

4.
Burke A, Ding X, Singh R, Kraft R, Levi-Polyachenko N, Rylander M . Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A. 2009; 106(31):12897-902. PMC: 2722274. DOI: 10.1073/pnas.0905195106. View

5.
Morimoto R, Santoro M . Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998; 16(9):833-8. DOI: 10.1038/nbt0998-833. View