» Articles » PMID: 32807785

Photothermogenetic Inhibition of Cancer Stemness by Near-infrared-light-activatable Nanocomplexes

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Aug 19
PMID 32807785
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Strategies for eradicating cancer stem cells (CSCs) are urgently required because CSCs are resistant to anticancer drugs and cause treatment failure, relapse and metastasis. Here, we show that photoactive functional nanocarbon complexes exhibit unique characteristics, such as homogeneous particle morphology, high water dispersibility, powerful photothermal conversion, rapid photoresponsivity and excellent photothermal stability. In addition, the present biologically permeable second near-infrared (NIR-II) light-induced nanocomplexes photo-thermally trigger calcium influx into target cells overexpressing the transient receptor potential vanilloid family type 2 (TRPV2). This combination of nanomaterial design and genetic engineering effectively eliminates cancer cells and suppresses stemness of cancer cells in vitro and in vivo. Finally, in molecular analyses of mechanisms, we show that inhibition of cancer stemness involves calcium-mediated dysregulation of the Wnt/β-catenin signalling pathway. The present technological concept may lead to innovative therapies to address the global issue of refractory cancers.

Citing Articles

From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer.

He W, Li Y, Liu S, Chang Y, Han S, Han X Front Immunol. 2024; 15:1449525.

PMID: 39247186 PMC: 11377227. DOI: 10.3389/fimmu.2024.1449525.


Magnetothermal-activated gene editing strategy for enhanced tumor cell apoptosis.

Li M, Li S, Guo Y, Hu P, Shi J J Nanobiotechnology. 2024; 22(1):450.

PMID: 39080645 PMC: 11287911. DOI: 10.1186/s12951-024-02734-8.


PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer.

Wang C, Xu Y, Xu H, Li K, Zhang Q, Shi L J Nanobiotechnology. 2023; 21(1):476.

PMID: 38082443 PMC: 10712197. DOI: 10.1186/s12951-023-02240-3.


Application of advanced biomaterials in photothermal therapy for malignant bone tumors.

Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T Biomater Res. 2023; 27(1):116.

PMID: 37968707 PMC: 10652612. DOI: 10.1186/s40824-023-00453-z.


Functional nanoparticle-enabled non-genetic neuromodulation.

Zhang Z, You Y, Ge M, Lin H, Shi J J Nanobiotechnology. 2023; 21(1):319.

PMID: 37674191 PMC: 10483742. DOI: 10.1186/s12951-023-02084-x.


References
1.
Adorno-Cruz V, Kibria G, Liu X, Doherty M, Junk D, Guan D . Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res. 2015; 75(6):924-9. PMC: 4359955. DOI: 10.1158/0008-5472.CAN-14-3225. View

2.
Thi Hanh Phi L, Sari I, Yang Y, Lee S, Jun N, Kim K . Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018; 2018:5416923. PMC: 5850899. DOI: 10.1155/2018/5416923. View

3.
Chen J, Cao X, An Q, Zhang Y, Li K, Yao W . Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 2018; 9(1):1406. PMC: 5895803. DOI: 10.1038/s41467-018-03877-7. View

4.
Li S, Han Z, Zhao N, Zhu B, Zhang Q, Yang X . Inhibition of DNMT suppresses the stemness of colorectal cancer cells through down-regulating Wnt signaling pathway. Cell Signal. 2018; 47:79-87. DOI: 10.1016/j.cellsig.2018.03.014. View

5.
Huang X, Borgstrom B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H . The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS Cent Sci. 2018; 4(6):760-767. PMC: 6026786. DOI: 10.1021/acscentsci.8b00257. View