» Articles » PMID: 22492510

Master Regulatory GATA Transcription Factors: Mechanistic Principles and Emerging Links to Hematologic Malignancies

Overview
Specialty Biochemistry
Date 2012 Apr 12
PMID 22492510
Citations 115
Authors
Affiliations
Soon will be listed here.
Abstract

Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.

Citing Articles

Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes.

Liao R, Bresnick E Exp Hematol. 2024; 137:104252.

PMID: 38876253 PMC: 11381147. DOI: 10.1016/j.exphem.2024.104252.


The PRC2 complex epigenetically silences GATA4 to suppress cellular senescence and promote the progression of breast cancer.

Yu W, Lin X, Leng S, Hou Y, Dang Z, Xue S Transl Oncol. 2024; 46:102014.

PMID: 38843657 PMC: 11214403. DOI: 10.1016/j.tranon.2024.102014.


T cell and autoantibody profiling for primary immune regulatory disorders.

Harris E, Chamseddine S, Chu A, Senkpeil L, Nikiciuk M, Bourdine A medRxiv. 2024; .

PMID: 38464255 PMC: 10925364. DOI: 10.1101/2024.02.25.24303331.


Long noncoding RNA GATA2AS influences human erythropoiesis by transcription factor and chromatin landscape modulation.

Liu G, Kim J, Nguyen N, Zhou L, Dean A Blood. 2024; 143(22):2300-2313.

PMID: 38447046 PMC: 11181357. DOI: 10.1182/blood.2023021287.


Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program.

Katsumura K, Liu P, Kim J, Mehta C, Bresnick E Proc Natl Acad Sci U S A. 2024; 121(10):e2317147121.

PMID: 38422019 PMC: 10927522. DOI: 10.1073/pnas.2317147121.


References
1.
Snow J, Kim J, Currie C, Xu J, Orkin S . Sumoylation regulates interaction of FOG1 with C-terminal-binding protein (CTBP). J Biol Chem. 2010; 285(36):28064-75. PMC: 2934671. DOI: 10.1074/jbc.M109.096909. View

2.
Spange S, Wagner T, Heinzel T, Kramer O . Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2008; 41(1):185-98. DOI: 10.1016/j.biocel.2008.08.027. View

3.
Bonadies N, Foster S, Chan W, Kvinlaug B, Spensberger D, Dawson M . Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia. PLoS One. 2011; 6(1):e16330. PMC: 3030562. DOI: 10.1371/journal.pone.0016330. View

4.
Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P . A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol. 2006; 27(3):878-87. PMC: 1800675. DOI: 10.1128/MCB.01915-06. View

5.
Vakoc C, Letting D, Gheldof N, Sawado T, Bender M, Groudine M . Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005; 17(3):453-62. DOI: 10.1016/j.molcel.2004.12.028. View