» Articles » PMID: 20064464

Controlling Hematopoiesis Through Sumoylation-dependent Regulation of a GATA Factor

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2010 Jan 13
PMID 20064464
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.

Citing Articles

ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation.

Antonio Urrutia G, Ramachandran H, Cauchy P, Boo K, Ramamoorthy S, Boller S Genes Dev. 2021; 35(15-16):1142-1160.

PMID: 34244292 PMC: 8336893. DOI: 10.1101/gad.345843.120.


SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies.

Boulanger M, Chakraborty M, Tempe D, Piechaczyk M, Bossis G Molecules. 2021; 26(4).

PMID: 33562565 PMC: 7915335. DOI: 10.3390/molecules26040828.


Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting.

Liu H, Weng W, Guo R, Zhou J, Xue J, Zhong S Cell Death Differ. 2020; 27(11):3146-3161.

PMID: 32483381 PMC: 7560653. DOI: 10.1038/s41418-020-0569-1.


The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis.

Creed T, Baldeosingh R, Eberly C, Schlee C, Kim M, Cutler J Development. 2019; 147(1).

PMID: 31806659 PMC: 6983716. DOI: 10.1242/dev.177022.


Blood disease-causing and -suppressing transcriptional enhancers: general principles and mechanisms.

Bresnick E, Johnson K Blood Adv. 2019; 3(13):2045-2056.

PMID: 31289032 PMC: 6616255. DOI: 10.1182/bloodadvances.2019000378.


References
1.
Anguita E, Sharpe J, Sloane-Stanley J, Tufarelli C, Higgs D, Wood W . Deletion of the mouse alpha-globin regulatory element (HS -26) has an unexpectedly mild phenotype. Blood. 2002; 100(10):3450-6. DOI: 10.1182/blood-2002-05-1409. View

2.
Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007; 8(12):947-56. DOI: 10.1038/nrm2293. View

3.
Migliaccio A, Rana R, Sanchez M, Lorenzini R, Centurione L, Bianchi L . GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003; 197(3):281-96. PMC: 2193836. DOI: 10.1084/jem.20021149. View

4.
Im H, Grass J, Johnson K, Boyer M, Wu J, Bresnick E . Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol Biol. 2004; 284:129-46. DOI: 10.1385/1-59259-816-1:129. View

5.
Kerscher O, Felberbaum R, Hochstrasser M . Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006; 22:159-80. DOI: 10.1146/annurev.cellbio.22.010605.093503. View