» Articles » PMID: 22365814

Mutually Exclusive Binding of Telomerase RNA and DNA by Ku Alters Telomerase Recruitment Model

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2012 Feb 28
PMID 22365814
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in vitro and in vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:

Citing Articles

telomerase RNA: secondary structure and flexible-scaffold function.

McMurdie K, Peeney A, Mefford M, Baumann P, Zappulla D bioRxiv. 2025; .

PMID: 40027754 PMC: 11870620. DOI: 10.1101/2025.02.22.638514.


A mechanism for telomere-specific telomere length regulation.

Teplitz G, Pasquier E, Bonnell E, De Laurentiis E, Bartle L, Lucier J bioRxiv. 2024; .

PMID: 38915611 PMC: 11195199. DOI: 10.1101/2024.06.12.598646.


DNA-PK participates in pre-rRNA biogenesis independent of DNA double-strand break repair.

Li P, Gai X, Li Q, Yang Q, Yu X Nucleic Acids Res. 2024; 52(11):6360-6375.

PMID: 38682589 PMC: 11194077. DOI: 10.1093/nar/gkae316.


Telomere maintenance in African trypanosomes.

Li B Front Mol Biosci. 2023; 10:1302557.

PMID: 38074093 PMC: 10704157. DOI: 10.3389/fmolb.2023.1302557.


Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres.

Shepelev N, Dontsova O, Rubtsova M Int J Mol Sci. 2023; 24(5).

PMID: 36902458 PMC: 10003056. DOI: 10.3390/ijms24055027.


References
1.
Schober H, Ferreira H, Kalck V, Gehlen L, Gasser S . Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 2009; 23(8):928-38. PMC: 2675861. DOI: 10.1101/gad.1787509. View

2.
Fisher T, Taggart A, Zakian V . Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol. 2004; 11(12):1198-205. DOI: 10.1038/nsmb854. View

3.
Gottschling D, Aparicio O, Billington B, Zakian V . Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990; 63(4):751-62. DOI: 10.1016/0092-8674(90)90141-z. View

4.
Nugent C, Bosco G, ROSS L, Evans S, Salinger A, Moore J . Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol. 1998; 8(11):657-60. DOI: 10.1016/s0960-9822(98)70253-2. View

5.
Blier P, Griffith A, Craft J, Hardin J . Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem. 1993; 268(10):7594-601. View