» Articles » PMID: 22228834

Correction of RT-qPCR Data for Genomic DNA-derived Signals with ValidPrime

Overview
Specialty Biochemistry
Date 2012 Jan 10
PMID 22228834
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR). Currently, there is no alternative to RT(-) controls to evaluate the impact of the gDNA background on RT-PCR data. We propose a novel method (ValidPrime) that is more accurate than traditional RT(-) controls to test qPCR assays with respect to their sensitivity toward gDNA. ValidPrime measures the gDNA contribution using an optimized gDNA-specific ValidPrime assay (VPA) and gDNA reference sample(s). The VPA, targeting a non-transcribed locus, is used to measure the gDNA contents in RT(+) samples and the gDNA reference is used to normalize for GOI-specific differences in gDNA sensitivity. We demonstrate that the RNA-derived component of the signal can be accurately estimated and deduced from the total signal. ValidPrime corrects with high precision for both exogenous (spiked) and endogenous gDNA, contributing ∼60% of the total signal, whereas substantially reducing the number of required qPCR control reactions. In conclusion, ValidPrime offers a cost-efficient alternative to RT(-) controls and accurately corrects for signals derived from gDNA in RT-qPCR.

Citing Articles

R-Ras1 and R-Ras2 regulate mature oligodendrocyte subpopulations.

Alcover-Sanchez B, Garcia-Martin G, Paleo-Garcia V, Quintas A, Dopazo A, Gruart A Glia. 2024; 73(4):701-719.

PMID: 39558879 PMC: 11845848. DOI: 10.1002/glia.24643.


CleanUpRNAseq: An R/Bioconductor Package for Detecting and Correcting DNA Contamination in RNA-Seq Data.

Liu H, Hu K, OConnor K, Kelliher M, Zhu L BioTech (Basel). 2024; 13(3).

PMID: 39189209 PMC: 11348166. DOI: 10.3390/biotech13030030.


Focused cancer pathway analysis revealed unique therapeutic targets in retinoblastoma.

Balaji S, Rao A, Saraswathi K, Sethu Nagarajan R, Santhi R, Kim U Med Oncol. 2024; 41(7):168.

PMID: 38834895 DOI: 10.1007/s12032-024-02391-9.


Predicting sepsis using a combination of clinical information and molecular immune markers sampled in the ambulance.

Tuerxun K, Eklund D, Wallgren U, Dannenberg K, Repsilber D, Kruse R Sci Rep. 2023; 13(1):14917.

PMID: 37691028 PMC: 10493220. DOI: 10.1038/s41598-023-42081-6.


Gene Expression Quantification from Pathogenic Bacterial Biofilms by Quantitative PCR.

Franca A, Cerca N Methods Mol Biol. 2023; 2967:133-149.

PMID: 37608108 DOI: 10.1007/978-1-0716-3358-8_11.


References
1.
Yun J, Heisler L, Hwang I, Wilkins O, Lau S, Hyrcza M . Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Res. 2006; 34(12):e85. PMC: 1524913. DOI: 10.1093/nar/gkl400. View

2.
Liu Y, Zheng D, Balasubramanian S, Carriero N, Khurana E, Robilotto R . Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics. 2009; 10:480. PMC: 2770531. DOI: 10.1186/1471-2164-10-480. View

3.
Nordgard O, Kvaloy J, Farmen R, Heikkila R . Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem. 2006; 356(2):182-93. DOI: 10.1016/j.ab.2006.06.020. View

4.
Roy S, Gilbert W . The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006; 7(3):211-21. DOI: 10.1038/nrg1807. View

5.
Peccoud J, Jacob C . Theoretical uncertainty of measurements using quantitative polymerase chain reaction. Biophys J. 1996; 71(1):101-8. PMC: 1233461. DOI: 10.1016/S0006-3495(96)79205-6. View