» Articles » PMID: 22064655

Activation of Androgen Receptor, Lipogenesis, and Oxidative Stress Converged by SREBP-1 is Responsible for Regulating Growth and Progression of Prostate Cancer Cells

Overview
Journal Mol Cancer Res
Specialty Cell Biology
Date 2011 Nov 9
PMID 22064655
Citations 129
Authors
Affiliations
Soon will be listed here.
Abstract

We previously reported that sterol regulatory element-binding protein-1 (SREBP-1) is involved in the transcriptional regulation of androgen receptor (AR) and formation of fatty acid through altered expression of fatty acid synthase (FASN). In this article, we provide a new finding that SREBP-1 induced oxidative stress in prostate cancer cells through increased production of reactive oxygen species (ROS) and expression of NADPH oxidase 5 (Nox5). We have shown that (i) expression of SREBP-1 protein is positively associated with the clinical Gleason grades in human prostate cancer; (ii) genetic overexpression or knockdown of SREBP-1 in prostate cancer cells resulted in corresponding increased or decreased AR, FASN and Nox5 expression, fatty acid and lipid droplet accumulation, and ROS generation; and (iii) SREBP-1 induces and promotes the growth, migration, invasion, and castration-resistant progression of prostate cancer cells in vitro and in vivo. Our data show a novel molecular mechanism by which SREBP-1 promotes prostate cancer growth and progression through alterations in the concerted intracellular metabolic and signaling networks involving AR, lipogenesis, and ROS in prostate cancer cells.

Citing Articles

Lipid Metabolism Modulatory Cisplatin Prodrug Sensitizes Resistant Prostate Cancer toward Androgen Deprivation Therapy.

Guin S, Ashokan A, Pollack A, Dhar S ACS Pharmacol Transl Sci. 2024; 7(9):2820-2826.

PMID: 39296252 PMC: 11406688. DOI: 10.1021/acsptsci.4c00301.


The Influence of β-Carotene and Its Liposomal Form on the Expression of EMT Markers and Androgen-Dependent Pathways in Different Prostate Cell Lines.

Dulinska-Litewka J, Dykas K, Boznanski S, Halubiec P, Kaczor-Kaminska M, Zagajewski J Antioxidants (Basel). 2024; 13(8).

PMID: 39199148 PMC: 11351549. DOI: 10.3390/antiox13080902.


Metabolic adaptations in prostate cancer.

Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A Br J Cancer. 2024; 131(8):1250-1262.

PMID: 38969865 PMC: 11473656. DOI: 10.1038/s41416-024-02762-z.


Polydatin, a potential NOX5 agonist, synergistically enhances antitumor activity of cisplatin by stimulating oxidative stress in non‑small cell lung cancer.

Wu S, Zhao Q, Liu S, Kuang J, Zhang J, Onga A Int J Oncol. 2024; 65(2).

PMID: 38873997 PMC: 11251743. DOI: 10.3892/ijo.2024.5665.


Prostate Cancer and the Mevalonate Pathway.

Guerrero-Ochoa P, Rodriguez-Zapater S, Anel A, Esteban L, Camon-Fernandez A, Espilez-Ortiz R Int J Mol Sci. 2024; 25(4).

PMID: 38396837 PMC: 10888820. DOI: 10.3390/ijms25042152.


References
1.
Li L, Ittmann M, Ayala G, Tsai M, Amato R, Wheeler T . The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 2005; 8(2):108-18. DOI: 10.1038/sj.pcan.4500776. View

2.
Swinnen J, Heemers H, Van de Sande T, De Schrijver E, Brusselmans K, Heyns W . Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol. 2005; 92(4):273-9. DOI: 10.1016/j.jsbmb.2004.10.013. View

3.
Cinar B, Mukhopadhyay N, Meng G, Freeman M . Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem. 2007; 282(40):29584-93. DOI: 10.1074/jbc.M703310200. View

4.
Lu J, Monardo L, Bryskin I, Hou Z, Trachtenberg J, Wilson B . Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase. Prostate Cancer Prostatic Dis. 2009; 13(1):39-46. PMC: 2834342. DOI: 10.1038/pcan.2009.24. View

5.
GROSSMANN M, Huang H, Tindall D . Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 2001; 93(22):1687-97. DOI: 10.1093/jnci/93.22.1687. View