» Articles » PMID: 22017997

A Common, High-dimensional Model of the Representational Space in Human Ventral Temporal Cortex

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2011 Oct 25
PMID 22017997
Citations 265
Authors
Affiliations
Soon will be listed here.
Abstract

We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects' data) of response-pattern vectors in common model space greatly exceeded BSC of anatomically aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals.

Citing Articles

Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling.

Blauch N, Plaut D, Vin R, Behrmann M Imaging Neurosci (Camb). 2025; 3.

PMID: 40078535 PMC: 11894816. DOI: 10.1162/imag_a_00488.


Stimulus Selection Influences Prediction of Individual Phenotypes in Naturalistic Conditions.

Li X, Eickhoff S, Weis S Hum Brain Mapp. 2025; 46(3):e70164.

PMID: 39960115 PMC: 11831449. DOI: 10.1002/hbm.70164.


Semantic language decoding across participants and stimulus modalities.

Tang J, Huth A Curr Biol. 2025; 35(5):1023-1032.e6.

PMID: 39919742 PMC: 11903136. DOI: 10.1016/j.cub.2025.01.024.


Group-to-individual generalizability and individual-level inferences in cognitive neuroscience.

Mattoni M, Fisher A, Gates K, Chein J, Olino T Neurosci Biobehav Rev. 2025; 169:106024.

PMID: 39889869 PMC: 11835466. DOI: 10.1016/j.neubiorev.2025.106024.


Task relevant autoencoding enhances machine learning for human neuroscience.

Orouji S, Taschereau-Dumouchel V, Cortese A, Odegaard B, Cushing C, Cherkaoui M Sci Rep. 2025; 15(1):1365.

PMID: 39779744 PMC: 11711280. DOI: 10.1038/s41598-024-83867-6.


References
1.
Kriegeskorte N, Mur M, Bandettini P . Representational similarity analysis - connecting the branches of systems neuroscience. Front Syst Neurosci. 2008; 2:4. PMC: 2605405. DOI: 10.3389/neuro.06.004.2008. View

2.
Abdi H, Dunlop J, Williams L . How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). Neuroimage. 2008; 45(1):89-95. DOI: 10.1016/j.neuroimage.2008.11.008. View

3.
Kay K, Naselaris T, Prenger R, Gallant J . Identifying natural images from human brain activity. Nature. 2008; 452(7185):352-5. PMC: 3556484. DOI: 10.1038/nature06713. View

4.
Brants M, Baeck A, Wagemans J, Op de Beeck H . Multiple scales of organization for object selectivity in ventral visual cortex. Neuroimage. 2011; 56(3):1372-81. DOI: 10.1016/j.neuroimage.2011.02.079. View

5.
Peelen M, Downing P . Selectivity for the human body in the fusiform gyrus. J Neurophysiol. 2004; 93(1):603-8. DOI: 10.1152/jn.00513.2004. View