» Articles » PMID: 12925854

Faces and Objects in Macaque Cerebral Cortex

Overview
Journal Nat Neurosci
Date 2003 Aug 20
PMID 12925854
Citations 300
Authors
Affiliations
Soon will be listed here.
Abstract

How are different object categories organized by the visual system? Current evidence indicates that monkeys and humans process object categories in fundamentally different ways. Functional magnetic resonance imaging (fMRI) studies suggest that humans have a ventral temporal face area, but such evidence is lacking in macaques. Instead, face-responsive neurons in macaques seem to be scattered throughout temporal cortex, with some relative concentration in the superior temporal sulcus (STS). Here, using fMRI in alert fixating macaque monkeys and humans, we found that macaques do have discrete face-selective patches, similar in relative size and number to face patches in humans. The face patches were embedded within a large swath of object-selective cortex extending from V4 to rostral TE. This large region responded better to pictures of intact objects compared to scrambled objects, with different object categories eliciting different patterns of activity, as in the human. Overall, our results suggest that humans and macaques share a similar brain architecture for visual object processing.

Citing Articles

Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling.

Blauch N, Plaut D, Vin R, Behrmann M Imaging Neurosci (Camb). 2025; 3.

PMID: 40078535 PMC: 11894816. DOI: 10.1162/imag_a_00488.


Multi-dimensional social relationships shape social attention in monkeys.

Liu S, Huang J, Chen S, Platt M, Yang Y Elife. 2025; 14.

PMID: 40052871 PMC: 11888598. DOI: 10.7554/eLife.104460.


Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Hu D, Sato T, Rockland K, Tanifuji M, Tanigawa H Sci Rep. 2025; 15(1):3436.

PMID: 39870740 PMC: 11772672. DOI: 10.1038/s41598-025-87517-3.


Face pareidolia minimally engages macaque face selective neurons.

Koyano K, Taubert J, Robison W, Waidmann E, Leopold D Prog Neurobiol. 2025; 245:102709.

PMID: 39755201 PMC: 11781954. DOI: 10.1016/j.pneurobio.2024.102709.


Neuronal Mechanisms Underlying Face Recognition in Non-human Primates.

Amita H, Koyano K, Kunimatsu J Jpn Psychol Res. 2024; 66(4):416-442.

PMID: 39611029 PMC: 11601097. DOI: 10.1111/jpr.12530.


References
1.
Grill-Spector K, Kourtzi Z, Kanwisher N . The lateral occipital complex and its role in object recognition. Vision Res. 2001; 41(10-11):1409-22. DOI: 10.1016/s0042-6989(01)00073-6. View

2.
Logothetis N, Guggenberger H, Peled S, Pauls J . Functional imaging of the monkey brain. Nat Neurosci. 1999; 2(6):555-62. DOI: 10.1038/9210. View

3.
Sereno M, Dale A, Reppas J, Kwong K, Belliveau J, Brady T . Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995; 268(5212):889-93. DOI: 10.1126/science.7754376. View

4.
Leopold D, OToole A, Vetter T, Blanz V . Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci. 2001; 4(1):89-94. DOI: 10.1038/82947. View

5.
Vanduffel W, Fize D, Mandeville J, Nelissen K, Van Hecke P, Rosen B . Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron. 2001; 32(4):565-77. DOI: 10.1016/s0896-6273(01)00502-5. View