» Articles » PMID: 21994949

Processing and Translation Initiation of Non-long Terminal Repeat Retrotransposons by Hepatitis Delta Virus (HDV)-like Self-cleaving Ribozymes

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Oct 14
PMID 21994949
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.

Citing Articles

Minimal twister sister-like self-cleaving ribozymes in the human genome revealed by deep mutational scanning.

Zhang Z, Hong X, Xiong P, Wang J, Zhou Y, Zhan J Elife. 2024; 12.

PMID: 39636683 PMC: 11620745. DOI: 10.7554/eLife.90254.


Structure and sequence at an RNA template 5' end influence insertion of transgenes by an R2 retrotransposon protein.

Palm S, Horton C, Zhang X, Collins K RNA. 2024; 30(9):1227-1245.

PMID: 38960642 PMC: 11331408. DOI: 10.1261/rna.080031.124.


Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages.

Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel R Nat Commun. 2024; 15(1):1559.

PMID: 38378708 PMC: 10879173. DOI: 10.1038/s41467-024-45653-w.


Inhibition of ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory.

Chen C, Han J, Chinn C, Rounds J, Li X, Nikan M Elife. 2024; 13.

PMID: 38319152 PMC: 10919898. DOI: 10.7554/eLife.90116.


Cap-Independent Circular mRNA Translation Efficiency.

Deviatkin A, Simonov R, Trutneva K, Maznina A, Soroka A, Kogan A Vaccines (Basel). 2023; 11(2).

PMID: 36851116 PMC: 9967249. DOI: 10.3390/vaccines11020238.


References
1.
Burke W, Malik H, Rich S, Eickbush T . Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol. 2002; 19(5):619-30. DOI: 10.1093/oxfordjournals.molbev.a004121. View

2.
Winkler W, Nahvi A, Roth A, Collins J, Breaker R . Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004; 428(6980):281-6. DOI: 10.1038/nature02362. View

3.
Kamoshita N, Nomoto A, RajBhandary U . Translation initiation from the ribosomal A site or the P site, dependent on the conformation of RNA pseudoknot I in dicistrovirus RNAs. Mol Cell. 2009; 35(2):181-90. PMC: 2720879. DOI: 10.1016/j.molcel.2009.05.024. View

4.
Tay W, Behere G, Batterham P, Heckel D . Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol Biol. 2010; 10:144. PMC: 2887409. DOI: 10.1186/1471-2148-10-144. View

5.
Khvorova A, Lescoute A, Westhof E, Jayasena S . Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol. 2003; 10(9):708-12. DOI: 10.1038/nsb959. View