» Articles » PMID: 1849649

Retrotransposable Elements R1 and R2 Interrupt the RRNA Genes of Most Insects

Overview
Specialty Science
Date 1991 Apr 15
PMID 1849649
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

A large number of insect species have been screened for the presence of the retrotransposable elements R1 and R2. These elements integrate independently at specific sites in the 28S rRNA genes. Genomic blots indicated that 43 of 47 insect species from nine orders contained insertions, ranging in frequency from a few percent to greater than 50% of the 28S genes. Sequence analysis of these insertions from 8 species revealed 22 elements, 21 of which corresponded to R1 or R2 elements. Surprisingly, many species appeared to contain highly divergent copies of R1 and R2 elements. For example, a parasitic wasp contained at least four families of R1 elements; the Japanese beetle contained at least five families of R2 elements. The presence of these retrotransposable elements throughout Insecta and the observation that single species can harbor divergent families within its rRNA-encoding DNA loci present interesting questions concerning the age of these elements and the possibility of cross-species transfer.

Citing Articles

DecoyFinder: Identification of Contaminants in Sets of Homologous RNA Sequences.

Zhu M, Zuber J, Tan Z, Sharma G, Mathews D bioRxiv. 2024; .

PMID: 39464058 PMC: 11507696. DOI: 10.1101/2024.10.12.618037.


Structure and sequence at an RNA template 5' end influence insertion of transgenes by an R2 retrotransposon protein.

Palm S, Horton C, Zhang X, Collins K RNA. 2024; 30(9):1227-1245.

PMID: 38960642 PMC: 11331408. DOI: 10.1261/rna.080031.124.


Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci.

Zhang X, Van Treeck B, Horton C, McIntyre J, Palm S, Shumate J Nat Biotechnol. 2024; 43(1):42-51.

PMID: 38379101 PMC: 11371274. DOI: 10.1038/s41587-024-02137-y.


Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages.

Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel R Nat Commun. 2024; 15(1):1559.

PMID: 38378708 PMC: 10879173. DOI: 10.1038/s41467-024-45653-w.


The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera.

Dalikova M, Provaznikova I, Provaznik J, Grof-Tisza P, Pepi A, Nguyen P Genome Biol Evol. 2023; 15(6).

PMID: 37226278 PMC: 10257491. DOI: 10.1093/gbe/evad090.


References
1.
Rae P, Kohorn B, Wade R . The 10 kb Drosophila virilis 28S rDNA intervening sequence is flanked by a direct repeat of 14 base pairs of coding sequence. Nucleic Acids Res. 1980; 8(16):3491-504. PMC: 324170. DOI: 10.1093/nar/8.16.3491. View

2.
Wellauer P, Dawid I, Tartof K . X and Y chromosomal ribosomal DNA of Drosophila: comparison of spacers and insertions. Cell. 1978; 14(2):269-78. DOI: 10.1016/0092-8674(78)90113-7. View

3.
Roiha H, Miller J, Woods L, Glover D . Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature. 1981; 290(5809):749-53. DOI: 10.1038/290749a0. View

4.
Long E, Dawid I . Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell. 1979; 18(4):1185-96. DOI: 10.1016/0092-8674(79)90231-9. View

5.
Xiong Y, Eickbush T . Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990; 9(10):3353-62. PMC: 552073. DOI: 10.1002/j.1460-2075.1990.tb07536.x. View