» Articles » PMID: 21856199

SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome

Abstract

Acetylation is increasingly recognized as an important metabolic regulatory posttranslational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein deacetylase SIRT3. Mice lacking SIRT3 (SIRT3KO) placed on a HFD show accelerated obesity, insulin resistance, hyperlipidemia, and steatohepatitis compared to wild-type (WT) mice. The lipogenic enzyme stearoyl-CoA desaturase 1 is highly induced in SIRT3KO mice, and its deletion rescues both WT and SIRT3KO mice from HFD-induced hepatic steatosis and insulin resistance. We further identify a single nucleotide polymorphism in the human SIRT3 gene that is suggestive of a genetic association with the metabolic syndrome. This polymorphism encodes a point mutation in the SIRT3 protein, which reduces its overall enzymatic efficiency. Our findings show that loss of SIRT3 and dysregulation of mitochondrial protein acetylation contribute to the metabolic syndrome.

Citing Articles

SIRT3 deficiency reduces PFKFB3-driven T-cell glycolysis and promotes arthritic inflammation.

Wang T, Han T, Xiao X, Guo D, Sun X, Liu Y Sci China Life Sci. 2025; .

PMID: 40029452 DOI: 10.1007/s11427-024-2823-2.


Impact of Obesity on Pubertal Timing and Male Fertility.

Calcaterra V, Tiranini L, Magenes V, Rossi V, Cucinella L, Nappi R J Clin Med. 2025; 14(3).

PMID: 39941454 PMC: 11818283. DOI: 10.3390/jcm14030783.


Mitochondrial KMT9 methylates DLAT to control pyruvate dehydrogenase activity and prostate cancer growth.

Jia Y, Wang S, Urban S, Muller J, Sum M, Wang Q Nat Commun. 2025; 16(1):1191.

PMID: 39885202 PMC: 11782658. DOI: 10.1038/s41467-025-56492-8.


Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets.

Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z Cell Commun Signal. 2025; 23(1):20.

PMID: 39799353 PMC: 11724515. DOI: 10.1186/s12964-024-02025-7.


Mitochondrial lysine acylation and cardiometabolic stress: Truth or consequence?.

Muoio D, Williams A, Grimsrud P Curr Opin Physiol. 2024; 27.

PMID: 39606008 PMC: 11601992. DOI: 10.1016/j.cophys.2022.100551.


References
1.
Ahn B, Kim H, Song S, Lee I, Liu J, Vassilopoulos A . A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008; 105(38):14447-52. PMC: 2567183. DOI: 10.1073/pnas.0803790105. View

2.
Samuel V, Liu Z, Qu X, Elder B, Bilz S, Befroy D . Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004; 279(31):32345-53. DOI: 10.1074/jbc.M313478200. View

3.
Lombard D, Alt F, Cheng H, Bunkenborg J, Streeper R, Mostoslavsky R . Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007; 27(24):8807-14. PMC: 2169418. DOI: 10.1128/MCB.01636-07. View

4.
Tao R, Coleman M, Pennington J, Ozden O, Park S, Jiang H . Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010; 40(6):893-904. PMC: 3266626. DOI: 10.1016/j.molcel.2010.12.013. View

5.
Ardern C, Katzmarzyk P, Janssen I, Leon A, Wilmore J, Skinner J . Race and sex similarities in exercise-induced changes in blood lipids and fatness. Med Sci Sports Exerc. 2004; 36(9):1610-5. DOI: 10.1249/01.mss.0000139798.54405.af. View