» Articles » PMID: 21344591

Förster Energy Transfer Theory As Reflected in the Structures of Photosynthetic Light-harvesting Systems

Overview
Journal Chemphyschem
Specialty Chemistry
Date 2011 Feb 24
PMID 21344591
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.

Citing Articles

Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

He F, Zhao L, Qu X, Li K, Guo J, Zhao F Proc Natl Acad Sci U S A. 2024; 121(50):e2413678121.

PMID: 39642204 PMC: 11648859. DOI: 10.1073/pnas.2413678121.


Bio-inspired building blocks for all-organic metamaterials from visible to near-infrared.

Holder S, Estevez-Varela C, Pastoriza-Santos I, Lopez-Garcia M, Oulton R, Nunez-Sanchez S Nanophotonics. 2024; 12(2):307-318.

PMID: 39634858 PMC: 11501215. DOI: 10.1515/nanoph-2022-0690.


Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex.

Zhang Y, Li K, Qin B, Guo J, Zhang Q, Zhao D Nat Commun. 2024; 15(1):4999.

PMID: 38866834 PMC: 11169493. DOI: 10.1038/s41467-024-49453-0.


De novo design of proteins housing excitonically coupled chlorophyll special pairs.

Ennist N, Wang S, Kennedy M, Curti M, Sutherland G, Vasilev C Nat Chem Biol. 2024; 20(7):906-915.

PMID: 38831036 PMC: 11213709. DOI: 10.1038/s41589-024-01626-0.


Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll Pigments.

van Stokkum I, Muller M, Holzwarth A Int J Mol Sci. 2024; 25(7).

PMID: 38612934 PMC: 11012434. DOI: 10.3390/ijms25074125.


References
1.
Koepke J, Hu X, Muenke C, Schulten K, Michel H . The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996; 4(5):581-97. DOI: 10.1016/s0969-2126(96)00063-9. View

2.
Emerson R, Arnold W . THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. J Gen Physiol. 2009; 16(2):191-205. PMC: 2141200. DOI: 10.1085/jgp.16.2.191. View

3.
Ishizaki A, Fleming G . On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J Chem Phys. 2009; 130(23):234110. DOI: 10.1063/1.3155214. View

4.
Hsin J, Chandler D, Gumbart J, Harrison C, Sener M, Strumpfer J . Self-assembly of photosynthetic membranes. Chemphyschem. 2010; 11(6):1154-9. PMC: 3086839. DOI: 10.1002/cphc.200900911. View

5.
Strumpfer J, Schulten K . Light harvesting complex II B850 excitation dynamics. J Chem Phys. 2009; 131(22):225101. PMC: 2802260. DOI: 10.1063/1.3271348. View