» Articles » PMID: 20001083

Light Harvesting Complex II B850 Excitation Dynamics

Overview
Journal J Chem Phys
Specialties Biophysics
Chemistry
Date 2009 Dec 17
PMID 20001083
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The dynamics of excitation energy transfer within the B850 ring of light harvesting complex 2 from Rhodobacter sphaeroides and between neighboring B850 rings is investigated by means of dissipative quantum mechanics. The assumption of Boltzmann populated donor states for the calculation of intercomplex excitation transfer rates by generalized Forster theory is shown to give accurate results since intracomplex exciton relaxation to near-Boltzmann population exciton states occurs within a few picoseconds. The primary channels of exciton transfer between B850 rings are found to be the five lowest-lying exciton states, with non-850 nm exciton states making significant contributions to the total transfer rate.

Citing Articles

Role of Quantum Information in HEOM Trajectories.

Humphries B, Kinslow J, Green D, Jones G J Chem Theory Comput. 2024; 20(13):5383-5395.

PMID: 38889316 PMC: 11238535. DOI: 10.1021/acs.jctc.4c00144.


Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray.

Varvelo L, Lynd J, Citty B, Kuhn O, Raccah D J Phys Chem Lett. 2023; 14(12):3077-3083.

PMID: 36947483 PMC: 10069740. DOI: 10.1021/acs.jpclett.3c00086.


Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling.

Curti M, Maffeis V, Duarte L, Shareef S, Hallado L, Curutchet C Protein Sci. 2023; 32(3):e4579.

PMID: 36715022 PMC: 9951196. DOI: 10.1002/pro.4579.


Fully Quantum Modeling of Exciton Diffusion in Mesoscale Light Harvesting Systems.

Zheng F, Chen L, Gao J, Zhao Y Materials (Basel). 2021; 14(12).

PMID: 34198704 PMC: 8232211. DOI: 10.3390/ma14123291.


Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II.

Irgen-Gioro S, Gururangan K, Saer R, Blankenship R, Harel E Chem Sci. 2020; 10(45):10503-10509.

PMID: 32055373 PMC: 7003877. DOI: 10.1039/c9sc03501j.


References
1.
Janosi L, Kosztin I, Damjanovic A . Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. J Chem Phys. 2006; 125(1):014903. DOI: 10.1063/1.2210481. View

2.
Koepke J, Hu X, Muenke C, Schulten K, Michel H . The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996; 4(5):581-97. DOI: 10.1016/s0969-2126(96)00063-9. View

3.
Zerlauskiene O, Trinkunas G, Gall A, Robert B, Urboniene V, Valkunas L . Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. J Phys Chem B. 2009; 112(49):15883-92. DOI: 10.1021/jp803439w. View

4.
Cogdell R, Isaacs N, Freer A, Arrelano J, Howard T, Papiz M . The structure and function of the LH2 (B800-850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. Prog Biophys Mol Biol. 1997; 68(1):1-27. DOI: 10.1016/s0079-6107(97)00010-2. View

5.
Fleming G, van Grondelle R . Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol. 1997; 7(5):738-48. DOI: 10.1016/s0959-440x(97)80086-3. View