» Articles » PMID: 35763791

Catalysis and Electron Transfer in Designed Metalloproteins

Overview
Journal Chem Rev
Specialty Chemistry
Date 2022 Jun 28
PMID 35763791
Authors
Affiliations
Soon will be listed here.
Abstract

One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of metalloprotein design focused on reports from the past decade with special emphasis on designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.

Citing Articles

Design of a light and Ca switchable organic-peptide hybrid.

Khaleel Z, No Y, Kim N, Bae D, Wu Y, Kim S Proc Natl Acad Sci U S A. 2025; 122(5):e2411316122.

PMID: 39883844 PMC: 11804555. DOI: 10.1073/pnas.2411316122.


Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.

Capdevila D, Rondon J, Edmonds K, Rocchio J, Villarruel Dujovne M, Giedroc D Chem Rev. 2024; 124(24):13574-13659.

PMID: 39658019 PMC: 11672702. DOI: 10.1021/acs.chemrev.4c00264.


Discussing the Terms Biomimetic and Bioinspired within Bioinorganic Chemistry.

Engbers S, van Langevelde P, Hetterscheid D, Klein J Inorg Chem. 2024; 63(43):20057-20067.

PMID: 39307983 PMC: 11523218. DOI: 10.1021/acs.inorgchem.4c01070.


Understanding the role of negative charge in the scaffold of an artificial enzyme for CO hydrogenation on catalysis.

Trevino R, Fuller 3rd J, Reid D, Laureanti J, Ginovska B, Linehan J J Biol Inorg Chem. 2024; 29(6):625-638.

PMID: 39207604 DOI: 10.1007/s00775-024-02070-0.


Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles.

Renzi E, Esposito A, Leone L, Chavez M, Pineda T, Lombardi A Nanoscale Adv. 2024; 6(14):3533-3542.

PMID: 38989515 PMC: 11232542. DOI: 10.1039/d4na00344f.


References
1.
Desjarlais J, Handel T . De novo design of the hydrophobic cores of proteins. Protein Sci. 1995; 4(10):2006-18. PMC: 2142989. DOI: 10.1002/pro.5560041006. View

2.
Chufan E, Prigge S, Siebert X, Eipper B, Mains R, Amzel L . Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase. J Am Chem Soc. 2010; 132(44):15565-72. PMC: 3025614. DOI: 10.1021/ja103117r. View

3.
Kuo L, Perera N . Paraoxon and parathion hydrolysis by aqueous molybdenocene dichloride (Cp2MoCl2): first reported pesticide hydrolysis by an organometallic complex. Inorg Chem. 2003; 39(10):2103-6. DOI: 10.1021/ic991134k. View

4.
Childs R, Bardsley W . The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975; 145(1):93-103. PMC: 1165190. DOI: 10.1042/bj1450093. View

5.
Garbett K, Darnall D, KLOTZ I, Williams R . Spectroscopy and structure of hemerythrin. Arch Biochem Biophys. 1969; 135(1):419-34. DOI: 10.1016/0003-9861(69)90559-1. View