» Articles » PMID: 21263028

RNA Polymerase I-specific Subunits Promote Polymerase Clustering to Enhance the RRNA Gene Transcription Cycle

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2011 Jan 26
PMID 21263028
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I-specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.

Citing Articles

Evolutionary and Structural Insights into the RNA Polymerase I A34 Protein Family: A Focus on Intrinsic Disorder and Phase Separation.

Knutson B, Rothblum L Genes (Basel). 2025; 16(1).

PMID: 39858608 PMC: 11765491. DOI: 10.3390/genes16010061.


The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction.

Dominique C, Maiga N, Mendez-Godoy A, Pillet B, Hamze H, Leger-Silvestre I Nat Commun. 2024; 15(1):9415.

PMID: 39482307 PMC: 11528048. DOI: 10.1038/s41467-024-53805-1.


Force and the α-C-terminal domains bias RNA polymerase recycling.

Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L Nat Commun. 2024; 15(1):7520.

PMID: 39214958 PMC: 11364550. DOI: 10.1038/s41467-024-51603-3.


RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability.

Normand C, Dez C, Dauban L, Queille S, Danche S, Abderrahmane S RNA Biol. 2024; 21(1):1-16.

PMID: 39049162 PMC: 11275518. DOI: 10.1080/15476286.2024.2381910.


Origin and maintenance of large ribosomal RNA gene repeat size in mammals.

Macdonald E, Whibley A, Waters P, Patel H, Edwards R, Ganley A Genetics. 2024; 228(1).

PMID: 39044674 PMC: 11373518. DOI: 10.1093/genetics/iyae121.


References
1.
Huet J, Buhler J, Sentenac A, FROMAGEOT P . Dissociation of two polypeptide chains from yeast RNA polymerase A. Proc Natl Acad Sci U S A. 1975; 72(8):3034-8. PMC: 432913. DOI: 10.1073/pnas.72.8.3034. View

2.
Lechertier T, Sirri V, Hernandez-Verdun D, Roussel P . A B23-interacting sequence as a tool to visualize protein interactions in a cellular context. J Cell Sci. 2006; 120(Pt 2):265-75. DOI: 10.1242/jcs.03345. View

3.
Nakagawa K, Hisatake K, Imazawa Y, Ishiguro A, Matsumoto M, Pape L . The fission yeast RPA51 is a functional homolog of the budding yeast A49 subunit of RNA polymerase I and required for maximizing transcription of ribosomal DNA. Genes Genet Syst. 2003; 78(3):199-209. DOI: 10.1266/ggs.78.199. View

4.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

5.
Cramer P, Armache K, Baumli S, Benkert S, Brueckner F, Buchen C . Structure of eukaryotic RNA polymerases. Annu Rev Biophys. 2008; 37:337-52. DOI: 10.1146/annurev.biophys.37.032807.130008. View