» Articles » PMID: 20595611

Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude

Abstract

Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP's association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus in genetic adaptation to high altitude.

Citing Articles

Computational Genomics and Its Applications to Anthropological Questions.

Witt K, Villanea F Am J Biol Anthropol. 2025; 186 Suppl 78:e70010.

PMID: 40071816 PMC: 11898561. DOI: 10.1002/ajpa.70010.


Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity characteristics in three Chinese cattle breeds.

Wu X, Pei J, Xiong L, Ge Q, Bao P, Liang C BMC Genomics. 2025; 26(1):206.

PMID: 40021973 PMC: 11871715. DOI: 10.1186/s12864-025-11328-z.


Alternatively spliced NFKB1 transcripts enriched in Andean Aymara modulate inflammation, HIF and hemoglobin.

Song J, Han S, Amaru R, Lanikova L, Quispe T, Kim D Nat Commun. 2025; 16(1):1766.

PMID: 39971917 PMC: 11840074. DOI: 10.1038/s41467-025-56848-0.


A Tale of Too Many Trees: A Conundrum for Phylogenetic Regression.

Adams R, Lozano J, Duncan M, Green J, Assis R, DeGiorgio M Mol Biol Evol. 2025; 42(3).

PMID: 39930867 PMC: 11884811. DOI: 10.1093/molbev/msaf032.


Blood hemoglobin levels of the general population residing at low range altitudes.

Mizuta M, Nishi H, Odawara M, Oda Y, Nangaku M Ann Clin Epidemiol. 2025; 7(1):10-16.

PMID: 39926272 PMC: 11799857. DOI: 10.37737/ace.25002.


References
1.
Jain S, Maltepe E, Lu M, Simon C, Bradfield C . Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev. 1998; 73(1):117-23. DOI: 10.1016/s0925-4773(98)00038-0. View

2.
Beall C . Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A. 2007; 104 Suppl 1:8655-60. PMC: 1876443. DOI: 10.1073/pnas.0701985104. View

3.
Albert T, Molla M, Muzny D, Nazareth L, Wheeler D, Song X . Direct selection of human genomic loci by microarray hybridization. Nat Methods. 2007; 4(11):903-5. DOI: 10.1038/nmeth1111. View

4.
Moore L . Human genetic adaptation to high altitude. High Alt Med Biol. 2001; 2(2):257-79. DOI: 10.1089/152702901750265341. View

5.
Acampora D, Mazan S, Avantaggiato V, Barone P, Tuorto F, Lallemand Y . Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet. 1996; 14(2):218-22. DOI: 10.1038/ng1096-218. View