» Articles » PMID: 20117784

The Metabolism of Triglyceride-rich Lipoproteins Revisited: New Players, New Insight

Overview
Journal Atherosclerosis
Publisher Elsevier
Date 2010 Feb 2
PMID 20117784
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

Peripheral lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first step in chylomicron/VLDL clearance involving heparan sulfate proteoglycans (HSPGs) displayed at the cell surface of the capillaries in adipose tissue, heart and skeletal muscle. The newly generated chylomicron remnant particles are then cleared by the liver, whereas VLDL remnant particles are either further modified, through the action of hepatic lipase (HL) and cholesteryl ester transfer protein (CETP), into LDL particles or alternatively directly cleared by the liver. Two proteins, lipase maturation factor 1 (LMF1) and glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1), have been recently identified and have revised our current understanding of LPL maturation and LPL-mediated lipolysis. Moreover, new insights have been gained with respect to hepatic remnant clearance using genetically modified mice targeting the sulfation of HSPGs and even deletion of the most abundant heparan sulfate proteoglycan: syndecan1. In this review, we will provide an overview of novel data on both peripheral TG hydrolysis and hepatic remnant clearance that will improve our knowledge of plasma triglyceride metabolism.

Citing Articles

Evaluating atherogenic index of plasma as a predictor for metabolic syndrome: a cross-sectional analysis from Northern Taiwan.

Chen L, Chen Y, Lin Y, Wu H, Lee Y, Chen J Front Endocrinol (Lausanne). 2025; 15:1438254.

PMID: 39872319 PMC: 11769774. DOI: 10.3389/fendo.2024.1438254.


Development of a hamster model of spontaneous hypertriglyceridemia in diabetes.

Ma Y, Wang Y, Liu G Animal Model Exp Med. 2024; 7(6):955-960.

PMID: 39529532 PMC: 11680477. DOI: 10.1002/ame2.12490.


Triglyceride-rich lipoproteins and cardiovascular diseases.

Xu D, Xie L, Cheng C, Xue F, Sun C Front Endocrinol (Lausanne). 2024; 15:1409653.

PMID: 38883601 PMC: 11176465. DOI: 10.3389/fendo.2024.1409653.


Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health.

Diab R, Dimachkie L, Zein O, Dakroub A, Eid A Cell Biochem Biophys. 2024; 82(3):1583-1597.

PMID: 38847940 PMC: 11445340. DOI: 10.1007/s12013-024-01314-9.


RNA-Seq analysis of the pyloric caecum, liver, and muscle reveals molecular mechanisms regulating fillet color in rainbow trout.

Ahmed R, Ali A, Leeds T, Salem M BMC Genomics. 2023; 24(1):579.

PMID: 37770878 PMC: 10537910. DOI: 10.1186/s12864-023-09688-5.


References
1.
Beigneux A, Davies B, Gin P, Weinstein M, Farber E, Qiao X . Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007; 5(4):279-91. PMC: 1913910. DOI: 10.1016/j.cmet.2007.02.002. View

2.
Sukonina V, Lookene A, Olivecrona T, Olivecrona G . Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A. 2006; 103(46):17450-5. PMC: 1859949. DOI: 10.1073/pnas.0604026103. View

3.
Osborne Jr J, Lee N, Olivecrona T . Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry. 1985; 24(20):5606-11. DOI: 10.1021/bi00341a048. View

4.
Braun J, Severson D . Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992; 287 ( Pt 2):337-47. PMC: 1133170. DOI: 10.1042/bj2870337. View

5.
Beigneux A, Franssen R, Bensadoun A, Gin P, Melford K, Peter J . Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009; 29(6):956-62. PMC: 2811263. DOI: 10.1161/ATVBAHA.109.186577. View