» Articles » PMID: 17200715

Liver Heparan Sulfate Proteoglycans Mediate Clearance of Triglyceride-rich Lipoproteins Independently of LDL Receptor Family Members

Overview
Journal J Clin Invest
Specialty General Medicine
Date 2007 Jan 4
PMID 17200715
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

We examined the role of hepatic heparan sulfate in triglyceride-rich lipoprotein metabolism by inactivating the biosynthetic gene GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) in hepatocytes using the Cre-loxP system, which resulted in an approximately 50% reduction in sulfation of liver heparan sulfate. Mice were viable and healthy, but they accumulated triglyceride-rich lipoprotein particles containing apoB-100, apoB-48, apoE, and apoCI-IV. Compounding the mutation with LDL receptor deficiency caused enhanced accumulation of both cholesterol- and triglyceride-rich particles compared with mice lacking only LDL receptors, suggesting that heparan sulfate participates in the clearance of cholesterol-rich lipoproteins as well. Mutant mice synthesized VLDL normally but showed reduced plasma clearance of human VLDL and a corresponding reduction in hepatic VLDL uptake. Retinyl ester excursion studies revealed that clearance of intestinally derived lipoproteins also depended on hepatocyte heparan sulfate. These findings show that under normal physiological conditions, hepatic heparan sulfate proteoglycans play a crucial role in the clearance of both intestinally derived and hepatic lipoprotein particles.

Citing Articles

Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications.

He S, Xu Z, Han X Mol Neurodegener. 2025; 20(1):11.

PMID: 39871348 PMC: 11773937. DOI: 10.1186/s13024-025-00803-6.


Time-Restricted Feeding Reduces Atherosclerosis in LDLR KO Mice but Not in ApoE Knockout Mice.

Chaix A, Lin T, Ramms B, Cutler R, Le T, Lopez C Arterioscler Thromb Vasc Biol. 2024; 44(9):2069-2087.

PMID: 39087348 PMC: 11409897. DOI: 10.1161/ATVBAHA.124.320998.


Glycosaminoglycan-mediated lipoprotein uptake protects cancer cells from ferroptosis.

Calhoon D, Sang L, Bezwada D, Kim N, Basu A, Hsu S bioRxiv. 2024; .

PMID: 38765991 PMC: 11101130. DOI: 10.1101/2024.05.13.593939.


Protective Effects of High-Density Lipoprotein on Cancer Risk: Focus on Multiple Myeloma.

Allegra A, Murdaca G, Mirabile G, Gangemi S Biomedicines. 2024; 12(3).

PMID: 38540127 PMC: 10967848. DOI: 10.3390/biomedicines12030514.


Apolipoprotein C3: form begets function.

Bornfeldt K J Lipid Res. 2023; 65(1):100475.

PMID: 37972731 PMC: 10805671. DOI: 10.1016/j.jlr.2023.100475.


References
1.
Rohlmann A, Gotthardt M, Willnow T, Hammer R, Herz J . Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol. 1996; 14(11):1562-5. DOI: 10.1038/nbt1196-1562. View

2.
Iverius P . Preparation, characterization, and measurement of lipoprotein lipase. Methods Enzymol. 1986; 129:691-704. DOI: 10.1016/0076-6879(86)29099-0. View

3.
Williams K, Brocia R, Fisher E . The unstirred water layer as a site of control of apolipoprotein B secretion. J Biol Chem. 1990; 265(28):16741-4. View

4.
Inatani M, Irie F, Plump A, Tessier-Lavigne M, Yamaguchi Y . Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science. 2003; 302(5647):1044-6. DOI: 10.1126/science.1090497. View

5.
Ebara T, Conde K, Kako Y, Liu Y, Xu Y, Ramakrishnan R . Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice. J Clin Invest. 2000; 105(12):1807-18. PMC: 378502. DOI: 10.1172/JCI8283. View