» Articles » PMID: 20124439

Chylomicronemia with Low Postheparin Lipoprotein Lipase Levels in the Setting of GPIHBP1 Defects

Abstract

Background: Recent studies in mice have established that an endothelial cell protein, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), is essential for the lipolytic processing of triglyceride-rich lipoproteins.

Methods And Results: We report the discovery of a homozygous missense mutation in GPIHBP1 in a young boy with severe chylomicronemia. The mutation, p.C65Y, replaces a conserved cysteine in the GPIHBP1 lymphocyte antigen 6 domain with a tyrosine and is predicted to perturb protein structure by interfering with the formation of a disulfide bond. Studies with transfected Chinese hamster ovary cells showed that GPIHBP1-C65Y reaches the cell surface but has lost the ability to bind lipoprotein lipase (LPL). When the GPIHBP1-C65Y homozygote was given an intravenous bolus of heparin, only trace amounts of LPL entered the plasma. We also observed very low levels of LPL in the postheparin plasma of a subject with chylomicronemia who was homozygous for a different GPIHBP1 mutation (p.Q115P). When the GPIHBP1-Q115P homozygote was given a 6-hour infusion of heparin, a significant amount of LPL appeared in the plasma, resulting in a fall in the plasma triglyceride levels from 1780 to 120 mg/dL.

Conclusions: We identified a novel GPIHBP1 missense mutation (p.C65Y) associated with defective LPL binding in a young boy with severe chylomicronemia. We also show that homozygosity for the C65Y or Q115P mutations is associated with low levels of LPL in the postheparin plasma, demonstrating that GPIHBP1 is important for plasma triglyceride metabolism in humans.

Citing Articles

Distinct strategies for intravascular triglyceride metabolism in hearts of mammals and lower vertebrate species.

Nguyen L, Song W, Yang Y, Tran A, Weston T, Jung H JCI Insight. 2024; 9(20).

PMID: 39435661 PMC: 11529983. DOI: 10.1172/jci.insight.184940.


A unified model for regulating lipoprotein lipase activity.

Zhang R, Zhang K Trends Endocrinol Metab. 2024; 35(6):490-504.

PMID: 38521668 PMC: 11663433. DOI: 10.1016/j.tem.2024.02.016.


Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes.

Kurooka N, Eguchi J, Wada J J Diabetes Investig. 2023; 14(10):1148-1156.

PMID: 37448184 PMC: 10512915. DOI: 10.1111/jdi.14056.


Intracapillary LPL levels in brown adipose tissue, visualized with an antibody-based approach, are regulated by ANGPTL4 at thermoneutral temperatures.

Song W, Yang Y, Heizer P, Tu Y, Weston T, Kim J Proc Natl Acad Sci U S A. 2023; 120(8):e2219833120.

PMID: 36787365 PMC: 9974459. DOI: 10.1073/pnas.2219833120.


A homozygous variant in the gene in a child with severe hypertriglyceridemia and a systematic literature review.

Sustar U, Groselj U, Khan S, Shafi S, Khan I, Kovac J Front Genet. 2022; 13:983283.

PMID: 36051701 PMC: 9424485. DOI: 10.3389/fgene.2022.983283.


References
1.
Brunzell J, Porte Jr D, Bierman E . Abnormal lipoprotein-lipase-mediated plasma triglyceride removal in untreated diabetes mellitus associated with hypertriglyceridemia. Metabolism. 1979; 28(9):901-7. DOI: 10.1016/0026-0495(79)90089-1. View

2.
Williams K . Some things just have to be done in vivo: GPIHBP1, caloric delivery, and the generation of remnant lipoproteins. Arterioscler Thromb Vasc Biol. 2009; 29(6):792-5. DOI: 10.1161/ATVBAHA.109.187823. View

3.
Kastelein J, Jukema J, Zwinderman A, Clee S, van Boven A, Jansen H . Lipoprotein lipase activity is associated with severity of angina pectoris. REGRESS Study Group. Circulation. 2000; 102(14):1629-33. DOI: 10.1161/01.cir.102.14.1629. View

4.
Beigneux A, Gin P, Davies B, Weinstein M, Bensadoun A, Fong L . Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J Biol Chem. 2009; 284(44):30240-7. PMC: 2781579. DOI: 10.1074/jbc.M109.046391. View

5.
Fry B, Wuster W, Kini R, Brusic V, Khan A, Venkataraman D . Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol. 2003; 57(1):110-29. DOI: 10.1007/s00239-003-2461-2. View