» Articles » PMID: 19995975

Label-free Cellular Manipulation and Sorting Via Biocompatible Ferrofluids

Overview
Specialty Science
Date 2009 Dec 10
PMID 19995975
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

We present a simple microfluidic platform that uses biocompatible ferrofluids for the controlled manipulation and rapid separation of both microparticles and live cells. This low-cost platform exploits differences in particle size, shape, and elasticity to achieve rapid and efficient separation. Using microspheres, we demonstrate size-based separation with 99% separation efficiency and sub-10-microm resolution in <45 s. We also show continuous manipulation and shape-based separation of live red blood cells from sickle cells and bacteria. These initial demonstrations reveal the potential of ferromicrofluidics in significantly reducing incubation times and increasing diagnostic sensitivity in cellular assays through rapid separation and delivery of target cells to sensor arrays.

Citing Articles

Integrating conductive electrodes into hydrogel-based microfluidic chips for real-time monitoring of cell response.

Pourmostafa A, Bhusal A, Haridas Menon N, Li Z, Basuray S, Miri A Front Bioeng Biotechnol. 2024; 12:1421592.

PMID: 39257447 PMC: 11384590. DOI: 10.3389/fbioe.2024.1421592.


Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid.

Hewlin Jr R, Edwards M, Schultz C Micromachines (Basel). 2023; 14(4).

PMID: 37421122 PMC: 10145302. DOI: 10.3390/mi14040889.


Shaping Liquid Droplets on an Active Air-Ferrofluid Interface.

Harischandra P, Valisalmi T, Cenev Z, Linder M, Zhou Q Langmuir. 2023; 39(22):7623-7631.

PMID: 37224278 PMC: 10249407. DOI: 10.1021/acs.langmuir.3c00298.


Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review.

Jiang D, Liu S, Tang W Micromachines (Basel). 2022; 13(10).

PMID: 36296012 PMC: 9611947. DOI: 10.3390/mi13101659.


From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior.

Krasia-Christoforou T, Socoliuc V, Knudsen K, Tombacz E, Turcu R, Vekas L Nanomaterials (Basel). 2020; 10(11).

PMID: 33142887 PMC: 7692798. DOI: 10.3390/nano10112178.


References
1.
Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz A . Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J. 1999; 28(4):312-6. DOI: 10.1007/s002490050213. View

2.
Muller T, Pfennig A, Klein P, Gradl G, Jager M, Schnelle T . The potential of dielectrophoresis for single-cell experiments. IEEE Eng Med Biol Mag. 2004; 22(6):51-61. DOI: 10.1109/memb.2003.1266047. View

3.
Cabrera C, Yager P . Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis. 2001; 22(2):355-62. DOI: 10.1002/1522-2683(200101)22:2<355::AID-ELPS355>3.0.CO;2-C. View

4.
Liu Y, Cheng D, Sonek G, Berns M, Chapman C, Tromberg B . Evidence for localized cell heating induced by infrared optical tweezers. Biophys J. 1995; 68(5):2137-44. PMC: 1282119. DOI: 10.1016/S0006-3495(95)80396-6. View

5.
Yellen B, Hovorka O, Friedman G . Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci U S A. 2005; 102(25):8860-4. PMC: 1150276. DOI: 10.1073/pnas.0500409102. View