» Articles » PMID: 17001005

Deterministic Hydrodynamics: Taking Blood Apart

Overview
Specialty Science
Date 2006 Sep 27
PMID 17001005
Citations 138
Authors
Affiliations
Soon will be listed here.
Abstract

We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 microm/sec and volume rates up to 1 microl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma.

Citing Articles

The Latest Advances in Microfluidic DLD Cell Sorting Technology: The Optimization of Channel Design.

Fan D, Liu Y, Liu Y Biosensors (Basel). 2025; 15(2).

PMID: 39997028 PMC: 11853672. DOI: 10.3390/bios15020126.


Robust and efficient separation of white blood cells from blood using a microfluidic chip with a pair of linearly tapered crossflow filter arrays.

Huang Y, Chen P, Niu M, Peng W Mikrochim Acta. 2024; 192(1):41.

PMID: 39738679 DOI: 10.1007/s00604-024-06913-0.


Microfluidic Nanoparticle Separation for Precision Medicine.

Lan Z, Chen R, Zou D, Zhao C Adv Sci (Weinh). 2024; 12(4):e2411278.

PMID: 39632600 PMC: 11775552. DOI: 10.1002/advs.202411278.


Effective Boundary Correction for Deterministic Lateral Displacement Microchannels to Improve Cell Separation: A Numerical and Experimental Study.

Mirhosseini S, Eskandarisani M, Faghih Nasiri A, Khatami F, Mirzaei A, Badieirostami M Biosensors (Basel). 2024; 14(10).

PMID: 39451679 PMC: 11506467. DOI: 10.3390/bios14100466.


A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy.

Wang D, Yang S, Wang N, Guo H, Feng S, Luo Y Biosensors (Basel). 2024; 14(4).

PMID: 38667167 PMC: 11048442. DOI: 10.3390/bios14040174.


References
1.
Gifford S, Frank M, Derganc J, Gabel C, Austin R, Yoshida T . Parallel microchannel-based measurements of individual erythrocyte areas and volumes. Biophys J. 2003; 84(1):623-33. PMC: 1302643. DOI: 10.1016/S0006-3495(03)74882-6. View

2.
Huang L, Cox E, Austin R, Sturm J . Continuous particle separation through deterministic lateral displacement. Science. 2004; 304(5673):987-90. DOI: 10.1126/science.1094567. View

3.
Boyum A . Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens. 1974; 4(4):269-74. View

4.
Schmid-Schonbein G, Shih Y, Chien S . Morphometry of human leukocytes. Blood. 1980; 56(5):866-75. View

5.
Smeland E, Funderud S, Kvalheim G, Gaudernack G, Rasmussen A, Rusten L . Isolation and characterization of human hematopoietic progenitor cells: an effective method for positive selection of CD34+ cells. Leukemia. 1992; 6(8):845-52. View