Buszewski B, Maslak E, Zloch M, Railean-Plugaru V, Klodzinska E, Pomastowski P
Trends Analyt Chem. 2021; 139:116250.
PMID: 34776563
PMC: 8573725.
DOI: 10.1016/j.trac.2021.116250.
Burklund A, Petryk J, Hoopes P, Zhang J
Biomicrofluidics. 2020; 14(3):034115.
PMID: 32642021
PMC: 7316515.
DOI: 10.1063/5.0011908.
Burklund A, Zhang J
Ann Biomed Eng. 2019; 47(7):1657-1674.
PMID: 30980291
PMC: 6687464.
DOI: 10.1007/s10439-019-02256-7.
Dutta D
J Chromatogr A. 2017; 1484:85-92.
PMID: 28081900
PMC: 5316482.
DOI: 10.1016/j.chroma.2017.01.004.
Sun M, Agarwal P, Zhao S, Zhao Y, Lu X, He X
Anal Chem. 2016; 88(16):8264-71.
PMID: 27409352
PMC: 5497574.
DOI: 10.1021/acs.analchem.6b02104.
Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques.
Jivani R, Lakhtaria G, Patadiya D, Patel L, Jivani N, Jhala B
Saudi Pharm J. 2016; 24(1):1-20.
PMID: 26903763
PMC: 4719786.
DOI: 10.1016/j.jsps.2013.12.003.
Mathematical and numerical model to study two-dimensional free flow isoelectric focusing.
Yoo K, Shim J, Liu J, Dutta P
Biomicrofluidics. 2014; 8(3):034111.
PMID: 25379071
PMC: 4162414.
DOI: 10.1063/1.4883575.
A photoinduced nanoparticle separation in microchannels via pH-sensitive surface traps.
Ebara M, Hoffman J, Hoffman A, Stayton P, Lai J
Langmuir. 2013; 29(18):5388-93.
PMID: 23581256
PMC: 3742372.
DOI: 10.1021/la400347r.
Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.
Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S
Lab Chip. 2013; 13(9):1772-1779.
PMID: 23511348
PMC: 3988908.
DOI: 10.1039/c3lc00043e.
Numerical simulation of optically-induced dielectrophoresis using a voltage-transformation-ratio model.
Hung S, Huang S, Lee G
Sensors (Basel). 2013; 13(2):1965-83.
PMID: 23385411
PMC: 3649436.
DOI: 10.3390/s130201965.
Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays.
Madiyar F, Syed L, Culbertson C, Li J
Electrophoresis. 2013; 34(7):1123-30.
PMID: 23348683
PMC: 3754441.
DOI: 10.1002/elps.201200486.
Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems.
Lui C, Cady N, Batt C
Sensors (Basel). 2012; 9(5):3713-44.
PMID: 22412335
PMC: 3297159.
DOI: 10.3390/s90503713.
Microfluidic concentration of bacteria by on-chip electrophoresis.
Puchberger-Enengl D, Podszun S, Heinz H, Hermann C, Vulto P, Urban G
Biomicrofluidics. 2011; 5(4):44111-4411110.
PMID: 22207893
PMC: 3246011.
DOI: 10.1063/1.3664691.
Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting.
Yamaguchi N, Torii M, Uebayashi Y, Nasu M
Appl Environ Microbiol. 2010; 77(4):1536-9.
PMID: 21169431
PMC: 3067242.
DOI: 10.1128/AEM.01765-10.
Microfluidic preparative free-flow isoelectric focusing in a triangular channel: system development and characterization.
Wen J, Albrecht J, Jensen K
Electrophoresis. 2010; 31(10):1606-14.
PMID: 20419703
PMC: 3087295.
DOI: 10.1002/elps.200900577.
Microfluidic preparative free-flow isoelectric focusing: system optimization for protein complex separation.
Wen J, Wilker E, Yaffe M, Jensen K
Anal Chem. 2010; 82(4):1253-60.
PMID: 20092256
PMC: 2826279.
DOI: 10.1021/ac902157e.
Label-free cellular manipulation and sorting via biocompatible ferrofluids.
Kose A, Fischer B, Mao L, Koser H
Proc Natl Acad Sci U S A. 2009; 106(51):21478-83.
PMID: 19995975
PMC: 2799875.
DOI: 10.1073/pnas.0912138106.
Biomolecular gradients in cell culture systems.
Keenan T, Folch A
Lab Chip. 2007; 8(1):34-57.
PMID: 18094760
PMC: 3848882.
DOI: 10.1039/b711887b.
Rapid and simple quantification of bacterial cells by using a microfluidic device.
Sakamoto C, Yamaguchi N, Nasu M
Appl Environ Microbiol. 2005; 71(2):1117-21.
PMID: 15691978
PMC: 546694.
DOI: 10.1128/AEM.71.2.1117-1121.2005.