6.
Barraud N, Schleheck D, Klebensberger J, Webb J, Hassett D, Rice S
. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009; 191(23):7333-42.
PMC: 2786556.
DOI: 10.1128/JB.00975-09.
View
7.
Guan C, Huang Y, Zhou Y, Han Y, Liu S, Liu S
. FlhF affects the subcellular clustering of WspR through HsbR in . Appl Environ Microbiol. 2023; 90(1):e0154823.
PMC: 10807432.
DOI: 10.1128/aem.01548-23.
View
8.
Verstraete L, Aizawa J, Govaerts M, De Vooght L, Lavigne R, Michiels J
. Persistence Level Reflects Antibiotic Survival of Natural Pseudomonas aeruginosa Isolates in a Murine Lung Infection Model. Microbiol Spectr. 2023; 11(3):e0497022.
PMC: 10269860.
DOI: 10.1128/spectrum.04970-22.
View
9.
Navarro M, De N, Bae N, Wang Q, Sondermann H
. Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure. 2009; 17(8):1104-16.
PMC: 2747306.
DOI: 10.1016/j.str.2009.06.010.
View
10.
Secor P, Michaels L, Ratjen A, Jennings L, Singh P
. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in . Proc Natl Acad Sci U S A. 2018; 115(42):10780-10785.
PMC: 6196481.
DOI: 10.1073/pnas.1806005115.
View
11.
Gupta K, Liao J, Petrova O, Cherny K, Sauer K
. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol. 2014; 92(3):488-506.
PMC: 4029167.
DOI: 10.1111/mmi.12587.
View
12.
Basu Roy A, Petrova O, Sauer K
. Extraction and Quantification of Cyclic Di-GMP from . Bio Protoc. 2014; 3(14).
PMC: 4241849.
DOI: 10.21769/bioprotoc.828.
View
13.
Rao F, Qi Y, Chong H, Kotaka M, Li B, Li J
. The functional role of a conserved loop in EAL domain-based cyclic di-GMP-specific phosphodiesterase. J Bacteriol. 2009; 191(15):4722-31.
PMC: 2715702.
DOI: 10.1128/JB.00327-09.
View
14.
Basu Roy A, Sauer K
. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol. 2014; 94(4):771-93.
PMC: 4227967.
DOI: 10.1111/mmi.12802.
View
15.
Facchini M, De Fino I, Riva C, Bragonzi A
. Long term chronic Pseudomonas aeruginosa airway infection in mice. J Vis Exp. 2014; (85).
PMC: 4151694.
DOI: 10.3791/51019.
View
16.
Qvortrup K, Hultqvist L, Nilsson M, Jakobsen T, Jansen C, Uhd J
. Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Front Chem. 2019; 7:742.
PMC: 6838868.
DOI: 10.3389/fchem.2019.00742.
View
17.
Chen G, Zhou J, Zuo Y, Huo W, Peng J, Li M
. Structural basis for diguanylate cyclase activation by its binding partner in . Elife. 2021; 10.
PMC: 8457831.
DOI: 10.7554/eLife.67289.
View
18.
Malone J
. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist. 2015; 8:237-47.
PMC: 4524453.
DOI: 10.2147/IDR.S68214.
View
19.
Hengge R
. High-specificity local and global c-di-GMP signaling. Trends Microbiol. 2021; 29(11):993-1003.
DOI: 10.1016/j.tim.2021.02.003.
View
20.
Rosay T, Bazire A, Diaz S, Clamens T, Blier A, Mijouin L
. Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation. mBio. 2015; 6(4).
PMC: 4550695.
DOI: 10.1128/mBio.01033-15.
View