6.
Li Y, Petrova O, Su S, Lau G, Panmanee W, Na R
. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog. 2014; 10(6):e1004168.
PMC: 4047105.
DOI: 10.1371/journal.ppat.1004168.
View
7.
Kalia M, Resch M, Cherny K, Sauer K
. The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Biofilms. mSphere. 2022; 7(6):e0050522.
PMC: 9769550.
DOI: 10.1128/msphere.00505-22.
View
8.
Chambers J, Cherny K, Sauer K
. Susceptibility of Pseudomonas aeruginosa Dispersed Cells to Antimicrobial Agents Is Dependent on the Dispersion Cue and Class of the Antimicrobial Agent Used. Antimicrob Agents Chemother. 2017; 61(12).
PMC: 5700346.
DOI: 10.1128/AAC.00846-17.
View
9.
Dow J, Fouhy Y, Lucey J, Ryan R
. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact. 2006; 19(12):1378-84.
DOI: 10.1094/MPMI-19-1378.
View
10.
Barraud N, Schleheck D, Klebensberger J, Webb J, Hassett D, Rice S
. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009; 191(23):7333-42.
PMC: 2786556.
DOI: 10.1128/JB.00975-09.
View
11.
Mah T, Pitts B, Pellock B, Walker G, Stewart P, OToole G
. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003; 426(6964):306-10.
DOI: 10.1038/nature02122.
View
12.
Cherny K, Sauer K
. Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA To Disperse from the Biofilm. J Bacteriol. 2019; 201(18).
PMC: 6707924.
DOI: 10.1128/JB.00059-19.
View
13.
Huynh T, McDougald D, Klebensberger J, Al Qarni B, Barraud N, Rice S
. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One. 2012; 7(8):e42874.
PMC: 3419228.
DOI: 10.1371/journal.pone.0042874.
View
14.
An S, Wu J, Zhang L
. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol. 2010; 76(24):8160-73.
PMC: 3008239.
DOI: 10.1128/AEM.01233-10.
View
15.
Liao Y, Smyth G, Shi W
. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30.
DOI: 10.1093/bioinformatics/btt656.
View
16.
Berne C, Ellison C, Ducret A, Brun Y
. Bacterial adhesion at the single-cell level. Nat Rev Microbiol. 2018; 16(10):616-627.
DOI: 10.1038/s41579-018-0057-5.
View
17.
Dasgupta N, Wolfgang M, Goodman A, Arora S, Jyot J, Lory S
. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol. 2003; 50(3):809-24.
DOI: 10.1046/j.1365-2958.2003.03740.x.
View
18.
Basu Roy A, Sauer K
. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol. 2014; 94(4):771-93.
PMC: 4227967.
DOI: 10.1111/mmi.12802.
View
19.
Rumbaugh K, Sauer K
. Biofilm dispersion. Nat Rev Microbiol. 2020; 18(10):571-586.
PMC: 8564779.
DOI: 10.1038/s41579-020-0385-0.
View
20.
Spindler E, Hale J, Giddings Jr T, Hancock R, Gill R
. Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob Agents Chemother. 2011; 55(4):1706-16.
PMC: 3067151.
DOI: 10.1128/AAC.01053-10.
View