» Articles » PMID: 19586041

Glucagon-like Peptide-1 Functionalized PEG Hydrogels Promote Survival and Function of Encapsulated Pancreatic Beta-cells

Overview
Date 2009 Jul 10
PMID 19586041
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Encapsulating pancreatic islets in a semipermeable poly(ethylene glycol) (PEG) hydrogel membrane holds potential as an immuno-isolation barrier for the treatment of type 1 diabetes mellitus. The semipermeable PEG hydrogel not only permits free diffusion of nutrients, metabolic waste, and insulin produced from the encapsulated beta-cells, but also provides a size-exclusion effect to prevent direct contact of entrapped islets to host immune cells and antibodies. However, the use of unmodified PEG hydrogels for islet encapsulation is not ideal, as there is no bioactive cue to promote the long-term survival and function of the encapsulated cells. Herein, we report the synthesis and characterization of a bioactive glucagon-like peptide 1 (GLP-1) analog, namely, GLP-1-cysteine or GLP-1C, and the fabrication of functional GLP-1 immobilized PEG hydrogels via a facile thiol-acrylate photopolymerization. The immobilization of bioactive GLP-1C within PEG hydrogels is efficient and does not alter the bulk hydrogel properties. Further, the GLP-1 immobilized PEG hydrogels enhance the survival and insulin secretion of encapsulated islets. Overall, this study demonstrates a strategy to modify PEG hydrogels with bioactive peptide moieties that can significantly enhance the efficacy of islet encapsulation.

Citing Articles

Dendrimer and dendrimer gel-derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications.

Wang J, Li B, Kompella U, Yang H MedComm Biomater Appl. 2024; 2(1).

PMID: 38562247 PMC: 10983815. DOI: 10.1002/mba2.30.


Polymer-Based Hydrogels Applied in Drug Delivery: An Overview.

Thang N, Chien T, Cuong D Gels. 2023; 9(7).

PMID: 37504402 PMC: 10379988. DOI: 10.3390/gels9070523.


Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus.

Siwakoti P, Rennie C, Huang Y, Li J, Tuch B, McClements L Stem Cell Rev Rep. 2022; 19(3):601-624.

PMID: 36434300 DOI: 10.1007/s12015-022-10482-1.


Delivery of Dissociated Islets Cells within Microporous Annealed Particle Scaffold to Treat Type 1 Diabetes.

Roosa C, Ma M, Chhabra P, Brayman K, Griffin D Adv Ther (Weinh). 2022; 5(9).

PMID: 36405778 PMC: 9674036. DOI: 10.1002/adtp.202200064.


The Foundation for Engineering a Pancreatic Islet Niche.

Patel S, Mathews C, Chandler R, Stabler C Front Endocrinol (Lausanne). 2022; 13:881525.

PMID: 35600597 PMC: 9114707. DOI: 10.3389/fendo.2022.881525.


References
1.
Bonner-Weir S, Weir G . New sources of pancreatic beta-cells. Nat Biotechnol. 2005; 23(7):857-61. DOI: 10.1038/nbt1115. View

2.
Youn Y, Chae S, Lee S, Kwon M, Shin H, Lee K . Improved peroral delivery of glucagon-like peptide-1 by site-specific biotin modification: design, preparation, and biological evaluation. Eur J Pharm Biopharm. 2007; 68(3):667-75. DOI: 10.1016/j.ejpb.2007.07.009. View

3.
Chae S, Jin C, Shin H, Youn Y, Lee S, Lee K . Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjug Chem. 2007; 19(1):334-41. DOI: 10.1021/bc700292v. View

4.
Cheung C, Anseth K . Synthesis of immunoisolation barriers that provide localized immunosuppression for encapsulated pancreatic islets. Bioconjug Chem. 2006; 17(4):1036-42. DOI: 10.1021/bc060023o. View

5.
Peppas N, Wood K, Blanchette J . Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther. 2004; 4(6):881-7. DOI: 10.1517/14712598.4.6.881. View