» Articles » PMID: 19323824

The Impact of Surfactant Protein-A on Ozone-induced Changes in the Mouse Bronchoalveolar Lavage Proteome

Overview
Journal Proteome Sci
Publisher Biomed Central
Date 2009 Mar 28
PMID 19323824
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Ozone is a major component of air pollution. Exposure to this powerful oxidizing agent can cause or exacerbate many lung conditions, especially those involving innate immunity. Surfactant protein-A (SP-A) plays many roles in innate immunity by participating directly in host defense as it exerts opsonin function, or indirectly via its ability to regulate alveolar macrophages and other innate immune cells. The mechanism(s) responsible for ozone-induced pathophysiology, while likely related to oxidative stress, are not well understood.

Methods: We employed 2-dimensional difference gel electrophoresis (2D-DIGE), a discovery proteomics approach, coupled with MALDI-ToF/ToF to compare the bronchoalveolar lavage (BAL) proteomes in wild type (WT) and SP-A knockout (KO) mice and to assess the impact of ozone or filtered air on the expression of BAL proteins. Using the PANTHER database and the published literature most identified proteins were placed into three functional groups.

Results: We identified 66 proteins and focused our analysis on these proteins. Many of them fell into three categories: defense and immunity; redox regulation; and protein metabolism, modification and chaperones. In response to the oxidative stress of acute ozone exposure (2 ppm; 3 hours) there were many significant changes in levels of expression of proteins in these groups. Most of the proteins in the redox group were decreased, the proteins involved in protein metabolism increased, and roughly equal numbers of increases and decreases were seen in the defense and immunity group. Responses between WT and KO mice were similar in many respects. However, the percent change was consistently greater in the KO mice and there were more changes that achieved statistical significance in the KO mice, with levels of expression in filtered air-exposed KO mice being closer to ozone-exposed WT mice than to filtered air-exposed WT mice.

Conclusion: We postulate that SP-A plays a role in reactive oxidant scavenging in WT mice and that its absence in the KO mice in the presence or absence of ozone exposure results in more pronounced, and presumably chronic, oxidative stress.

Citing Articles

Genetic susceptibility to airway inflammation and exposure to short-term outdoor air pollution.

Bouma F, Nyberg F, Olin A, Carlsen H Environ Health. 2023; 22(1):50.

PMID: 37386634 PMC: 10308777. DOI: 10.1186/s12940-023-00996-7.


Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and Animal and Human Survival Under Various Conditions.

Floros J, Thorenoor N, Tsotakos N, Phelps D Front Immunol. 2021; 12:681639.

PMID: 34484180 PMC: 8415824. DOI: 10.3389/fimmu.2021.681639.


Differential Sex-Dependent Regulation of the Alveolar Macrophage miRNome of SP-A2 and co-ex (SP-A1/SP-A2) and Sex Differences Attenuation after 18 h of Ozone Exposure.

Thorenoor N, Phelps D, Floros J Antioxidants (Basel). 2020; 9(12).

PMID: 33260937 PMC: 7768498. DOI: 10.3390/antiox9121190.


Sex and SP-A2 Dependent NAD(H) Redox Alterations in Mouse Alveolar Macrophages in Response to Ozone Exposure: Potential Implications for COVID-19.

Xu H, Lin Z, Gandhi C, Amatya S, Wang Y, Li L Antioxidants (Basel). 2020; 9(10).

PMID: 32992843 PMC: 7601279. DOI: 10.3390/antiox9100915.


Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Infection and Ozone: Serendipity in Action.

Thorenoor N, Phelps D, Kala P, Ravi R, Floros Phelps A, Umstead T Microorganisms. 2020; 8(9).

PMID: 32825654 PMC: 7570056. DOI: 10.3390/microorganisms8091276.


References
1.
Ajees A, Gunasekaran K, Volanakis J, Narayana S, Kotwal G, Murthy H . The structure of complement C3b provides insights into complement activation and regulation. Nature. 2006; 444(7116):221-5. DOI: 10.1038/nature05258. View

2.
Sharma P, Jain S, Tiwari P . Elevated level of serum LDH2 and LDH3 in sputum three positive TB patients of Sahariya tribe: a preliminary study. Clin Biochem. 2007; 40(18):1414-9. DOI: 10.1016/j.clinbiochem.2007.04.024. View

3.
Wong W, Gerry A, Putt W, Roberts J, Weinberg R, Humphries S . Common variants of apolipoprotein A-IV differ in their ability to inhibit low density lipoprotein oxidation. Atherosclerosis. 2006; 192(2):266-74. DOI: 10.1016/j.atherosclerosis.2006.07.017. View

4.
Gibson F, Anderson L, Babnigg G, Baker M, Berth M, Binz P . Guidelines for reporting the use of gel electrophoresis in proteomics. Nat Biotechnol. 2008; 26(8):863-4. DOI: 10.1038/nbt0808-863. View

5.
Kim J . Ambient air pollution: health hazards to children. Pediatrics. 2004; 114(6):1699-707. DOI: 10.1542/peds.2004-2166. View