» Articles » PMID: 19135890

Posttranscriptional Crossregulation Between Drosha and DGCR8

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2009 Jan 13
PMID 19135890
Citations 243
Authors
Affiliations
Soon will be listed here.
Abstract

The Drosha-DGCR8 complex, also known as Microprocessor, is essential for microRNA (miRNA) maturation. Drosha functions as the catalytic subunit, while DGCR8 (also known as Pasha) recognizes the RNA substrate. Although the action mechanism of this complex has been intensively studied, it remains unclear how Drosha and DGCR8 are regulated and if these proteins have any additional role(s) apart from miRNA processing. Here, we report that Drosha and DGCR8 regulate each other posttranscriptionally. The Drosha-DGCR8 complex cleaves the hairpin structures embedded in the DGCR8 mRNA and thereby destabilizes the mRNA. We further find that DGCR8 stabilizes the Drosha protein via protein-protein interaction. This crossregulation between Drosha and DGCR8 may contribute to the homeostatic control of miRNA biogenesis. Furthermore, microarray analyses suggest that a number of mRNAs may be downregulated in a Microprocessor-dependent, miRNA-independent manner. Our study reveals a previously unsuspected function of Microprocessor in mRNA stability control.

Citing Articles

Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.

Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B Signal Transduct Target Ther. 2025; 10(1):73.

PMID: 40059188 PMC: 11891339. DOI: 10.1038/s41392-024-02112-8.


The biogenesis and regulation of animal microRNAs.

Kim H, Lee Y, Kim V Nat Rev Mol Cell Biol. 2024; .

PMID: 39702526 DOI: 10.1038/s41580-024-00805-0.


MicroRNA biogenesis pathway alterations in aging.

Sanz-Ros J, Mas-Bargues C, Romero-Garcia N, Huete-Acevedo J, Dromant M, Borras C Extracell Vesicles Circ Nucl Acids. 2024; 4(3):486-501.

PMID: 39698023 PMC: 11648461. DOI: 10.20517/evcna.2023.29.


A transcription-independent role for HIF-1α in modulating microprocessor assembly.

Li J, Wang M, Ruan J, Lyu Y, Weng Y, Brindangnanam P Nucleic Acids Res. 2024; 52(19):11806-11821.

PMID: 39319577 PMC: 11514450. DOI: 10.1093/nar/gkae792.


SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize mRNA.

Forcella P, Ifflander N, Rolando C, Balta E, Lampada A, Giachino C Elife. 2024; 13.

PMID: 38722021 PMC: 11149935. DOI: 10.7554/eLife.74940.


References
1.
Stark K, Xu B, Bagchi A, Lai W, Liu H, Hsu R . Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008; 40(6):751-60. DOI: 10.1038/ng.138. View

2.
Friedlander M, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S . Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008; 26(4):407-15. DOI: 10.1038/nbt1394. View

3.
Lee R, Feinbaum R, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843-54. DOI: 10.1016/0092-8674(93)90529-y. View

4.
Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N . Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res. 2007; 313(20):4196-207. DOI: 10.1016/j.yexcr.2007.07.020. View

5.
Hebert S, Horre K, Nicolai L, Papadopoulou A, Mandemakers W, Silahtaroglu A . Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008; 105(17):6415-20. PMC: 2359789. DOI: 10.1073/pnas.0710263105. View