» Articles » PMID: 18851737

Probabilistic Base Calling of Solexa Sequencing Data

Overview
Publisher Biomed Central
Specialty Biology
Date 2008 Oct 15
PMID 18851737
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology.

Results: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads.

Conclusion: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.

Citing Articles

Optocoder: computational decoding of spatially indexed bead arrays.

Senel E, Rajewsky N, Karaiskos N NAR Genom Bioinform. 2022; 4(2):lqac042.

PMID: 35685220 PMC: 9172073. DOI: 10.1093/nargab/lqac042.


Tumor DNA as a Cancer Biomarker through the Lens of Colorectal Neoplasia.

Cohen J, Diergaarde B, Papadopoulos N, Kinzler K, Schoen R Cancer Epidemiol Biomarkers Prev. 2020; 29(12):2441-2453.

PMID: 33033144 PMC: 7710619. DOI: 10.1158/1055-9965.EPI-20-0549.


How does inflammation drive mutagenesis in colorectal cancer?.

Hsu C, Sowers M, Hsu W, Eyzaguirre E, Qiu S, Chao C Trends Cancer Res. 2018; 12:111-132.

PMID: 30147278 PMC: 6107301.


From reads to operational taxonomic units: an ensemble processing pipeline for MiSeq amplicon sequencing data.

Mysara M, Njima M, Leys N, Raes J, Monsieurs P Gigascience. 2017; 6(2):1-10.

PMID: 28369460 PMC: 5466709. DOI: 10.1093/gigascience/giw017.


The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data.

Ambrosini G, Dreos R, Kumar S, Bucher P BMC Genomics. 2016; 17(1):938.

PMID: 27863463 PMC: 5116162. DOI: 10.1186/s12864-016-3288-8.


References
1.
Myers E, Miller W . Optimal alignments in linear space. Comput Appl Biosci. 1988; 4(1):11-7. DOI: 10.1093/bioinformatics/4.1.11. View

2.
Dohm J, Lottaz C, Borodina T, Himmelbauer H . Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008; 36(16):e105. PMC: 2532726. DOI: 10.1093/nar/gkn425. View

3.
Hinds D, Stuve L, Nilsen G, Halperin E, Eskin E, Ballinger D . Whole-genome patterns of common DNA variation in three human populations. Science. 2005; 307(5712):1072-9. DOI: 10.1126/science.1105436. View

4.
Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L . Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005; 437(7057):376-80. PMC: 1464427. DOI: 10.1038/nature03959. View

5.
Yakovchuk P, Protozanova E, Frank-Kamenetskii M . Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006; 34(2):564-74. PMC: 1360284. DOI: 10.1093/nar/gkj454. View