» Articles » PMID: 27863463

The ChIP-Seq Tools and Web Server: a Resource for Analyzing ChIP-seq and Other Types of Genomic Data

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2016 Nov 20
PMID 27863463
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Background: ChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for access, visualization and itegrative analysis of such data.

Results: Here we present the ChIP-Seq command line tools and web server, implementing basic algorithms for ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by running several tools in a cascade.

Conclusions: The various ChIP-Seq command line tools and web services either complement or compare favorably to related bioinformatics resources in terms of computational efficiency, ease of access to public data and interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/ .

Citing Articles

TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis.

Buckley N, Craxton A, Sun X, Panatta E, Pinon L, Beier S Cell Death Dis. 2024; 15(11):807.

PMID: 39516459 PMC: 11549358. DOI: 10.1038/s41419-024-07130-6.


Structure-based learning to predict and model protein-DNA interactions and transcription-factor co-operativity in -regulatory elements.

Oriol F, Alberto M, Joachim A, Patrick G, M B, Ruben M NAR Genom Bioinform. 2024; 6(2):lqae068.

PMID: 38867914 PMC: 11167492. DOI: 10.1093/nargab/lqae068.


Ribosome stalling is a signal for metabolic regulation by the ribotoxic stress response.

Snieckute G, Genzor A, Vind A, Ryder L, Stoneley M, Chamois S Cell Metab. 2022; 34(12):2036-2046.e8.

PMID: 36384144 PMC: 9763090. DOI: 10.1016/j.cmet.2022.10.011.


Productive visualization of high-throughput sequencing data using the SeqCode open portable platform.

Blanco E, Gonzalez-Ramirez M, Di Croce L Sci Rep. 2021; 11(1):19545.

PMID: 34599234 PMC: 8486768. DOI: 10.1038/s41598-021-98889-7.


Computational identification and experimental characterization of preferred downstream positions in human core promoters.

Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T PLoS Comput Biol. 2021; 17(8):e1009256.

PMID: 34383743 PMC: 8384218. DOI: 10.1371/journal.pcbi.1009256.


References
1.
Schmid C, Bucher P . ChIP-Seq data reveal nucleosome architecture of human promoters. Cell. 2007; 131(5):831-2. DOI: 10.1016/j.cell.2007.11.017. View

2.
Park P . ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009; 10(10):669-80. PMC: 3191340. DOI: 10.1038/nrg2641. View

3.
Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang Y, Williams E . ArrayExpress update--simplifying data submissions. Nucleic Acids Res. 2014; 43(Database issue):D1113-6. PMC: 4383899. DOI: 10.1093/nar/gku1057. View

4.
Goecks J, Nekrutenko A, Taylor J . Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11(8):R86. PMC: 2945788. DOI: 10.1186/gb-2010-11-8-r86. View

5.
Mathelier A, Fornes O, Arenillas D, Chen C, Denay G, Lee J . JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2015; 44(D1):D110-5. PMC: 4702842. DOI: 10.1093/nar/gkv1176. View