» Articles » PMID: 18583645

Comparative Genome Analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 Provides Insights into Evolutionary and Host Adaptation Pathways

Abstract

We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.

Citing Articles

Comparative Patho-Genomics of Serovar Enteritidis Reveal Potential Host-Specific Virulence Factors.

Moreau M, Edison L, Ivanov Y, Wijetunge D, Hewage E, Linder J Pathogens. 2025; 14(2).

PMID: 40005504 PMC: 11858713. DOI: 10.3390/pathogens14020128.


A sequencing-based method for quantifying gene-deletion mutants of bacteria in the intracellular environment.

Fei X, Yuan Z, Wellner S, Ma Y, Olsen J Front Microbiol. 2025; 15:1487724.

PMID: 39981033 PMC: 11841384. DOI: 10.3389/fmicb.2024.1487724.


Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence.

Carneiro D, Vidigal P, Morgan T, Vanetti M Access Microbiol. 2024; 6(11).

PMID: 39686970 PMC: 11649194. DOI: 10.1099/acmi.0.000828.v3.


Salmonella enterica virulence databases and bioinformatic analysis tools development.

Han J, Tang H, Zhao S, Foley S Sci Rep. 2024; 14(1):25228.

PMID: 39448688 PMC: 11502889. DOI: 10.1038/s41598-024-74124-x.


A double ttrA and pduA knock-out mutant of Salmonella Typhimurium is not attenuated for mice (Mus musculus).

Ferreira V, Saraiva M, de Lima T, de Fatima Nascimento C, Paschone G, Rabelo A Braz J Microbiol. 2024; 55(4):4177-4182.

PMID: 39412602 PMC: 11711602. DOI: 10.1007/s42770-024-01533-5.


References
1.
Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N . The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol. 2004; 339(2):279-300. DOI: 10.1016/j.jmb.2004.03.058. View

2.
Bishop A, Baker S, Jenks S, Fookes M, O Gaora P, Pickard D . Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol. 2005; 187(7):2469-82. PMC: 1065210. DOI: 10.1128/JB.187.7.2469-2482.2005. View

3.
Solano C, Garcia B, Valle J, Berasain C, Ghigo J, Gamazo C . Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol. 2002; 43(3):793-808. DOI: 10.1046/j.1365-2958.2002.02802.x. View

4.
Wood M, Jones M, Watson P, Hedges S, Wallis T, Galyov E . Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol. 1998; 29(3):883-91. DOI: 10.1046/j.1365-2958.1998.00984.x. View

5.
Barrow P, Lovell M . Experimental infection of egg-laying hens with Salmonella enteritidis phage type 4. Avian Pathol. 1991; 20(2):335-48. DOI: 10.1080/03079459108418769. View