» Articles » PMID: 18551175

SINE RNA Induces Severe Developmental Defects in Arabidopsis Thaliana and Interacts with HYL1 (DRB1), a Key Member of the DCL1 Complex

Overview
Journal PLoS Genet
Specialty Genetics
Date 2008 Jun 14
PMID 18551175
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs. RNase V1 protection assays mapped the binding site of HYL1 to a SB1 region that mimics the hairpin structure of microRNA precursors. We also show that HYL1, upon binding to RNA substrates, induces conformational changes that force single-stranded RNA regions to adopt a structured helix-like conformation. Xenopus laevis ADAR1, but not Arabidopsis DRB4, binds SB1 RNA in the same region as HYL1, suggesting that SINE RNAs bind only a subset of dsRBPs. Consistently, DCL4-DRB4-dependent miRNA accumulation was unchanged in SB1 transgenic Arabidopsis, whereas DCL1-HYL1-dependent miRNA and DCL1-HYL1-DCL4-DRB4-dependent tasiRNA accumulation was decreased. We propose that SINE RNA can modulate the activity of the RNAi pathways in plants and possibly in other eukaryotes.

Citing Articles

microRNA biogenesis and stabilization in plants.

Xu Y, Chen X Fundam Res. 2024; 3(5):707-717.

PMID: 38933298 PMC: 11197542. DOI: 10.1016/j.fmre.2023.02.023.


Properties of Plant Virus Protein Encoded by the 5'-Proximal Gene of Tetra-Cistron Movement Block.

Chergintsev D, Solovieva A, Atabekova A, Lezzhov A, Golyshev S, Morozov S Int J Mol Sci. 2023; 24(18).

PMID: 37762447 PMC: 10532019. DOI: 10.3390/ijms241814144.


Silencing of gene reduces resistance to tomato yellow leaf curl virus (TYLCV) in tomato ().

Huang X, Wei J, Wu D, Mi N, Fang S, Xiao Y Plant Signal Behav. 2022; 17(1):2149942.

PMID: 36453197 PMC: 9718546. DOI: 10.1080/15592324.2022.2149942.


Non-Coding RNAs in Response to Drought Stress.

Gelaw T, Sanan-Mishra N Int J Mol Sci. 2021; 22(22).

PMID: 34830399 PMC: 8621352. DOI: 10.3390/ijms222212519.


Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation.

Meng X, Li A, Yu B, Li S Comput Struct Biotechnol J. 2021; 19:2567-2574.

PMID: 34025943 PMC: 8114054. DOI: 10.1016/j.csbj.2021.04.062.


References
1.
Iacoangeli A, Rozhdestvensky T, Dolzhanskaya N, Tournier B, Schutt J, Brosius J . On BC1 RNA and the fragile X mental retardation protein. Proc Natl Acad Sci U S A. 2008; 105(2):734-9. PMC: 2206605. DOI: 10.1073/pnas.0710991105. View

2.
Hasler J, Strub K . Alu elements as regulators of gene expression. Nucleic Acids Res. 2006; 34(19):5491-7. PMC: 1636486. DOI: 10.1093/nar/gkl706. View

3.
Lenoir A, Lavie L, Prieto J, Goubely C, Cote J, Pelissier T . The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol. 2001; 18(12):2315-22. DOI: 10.1093/oxfordjournals.molbev.a003778. View

4.
McKenna S, Kim I, Liu C, Puglisi J . Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs. J Mol Biol. 2006; 358(5):1270-85. DOI: 10.1016/j.jmb.2006.03.003. View

5.
Hasler J, Samuelsson T, Strub K . Useful 'junk': Alu RNAs in the human transcriptome. Cell Mol Life Sci. 2007; 64(14):1793-800. PMC: 11136058. DOI: 10.1007/s00018-007-7084-0. View