» Articles » PMID: 15466488

SGS3 and SGS2/SDE1/RDR6 Are Required for Juvenile Development and the Production of Trans-acting SiRNAs in Arabidopsis

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2004 Oct 7
PMID 15466488
Citations 432
Authors
Affiliations
Soon will be listed here.
Abstract

Higher plants undergo a transition from a juvenile to an adult phase of vegetative development prior to flowering. Screens for mutants that undergo this transition precociously produced alleles of two genes required for posttranscriptional gene silencing (PTGS)--SUPPRESSOR OF GENE SILENCING3 (SGS3) and SUPPRESSOR OF GENE SILENCING2(SGS2)/SILENCING DEFECTIVE1 (SDE1)/RNA-DEPENDENT POLYMERASE6 (RDR6). Loss-of-function mutations in these genes have a phenotype similar to that of mutations in the Argonaute gene ZIPPY (ZIP). Epistasis analysis suggests that ZIP, SGS3, SGS2/SDE1/RDR6, and the putative miRNA export receptor, HASTY (HST), operate in the same pathway(s). Microarray analysis revealed a small number of genes whose mRNA is increased in ZIP, SGS3, and SGS2/SDE1/RDR6 mutants, as well as genes that are up-regulated in SGS3 and SGS2/SDE1/RDR6 mutants, but not in ZIP mutants. One of these latter genes (At5g18040) is silenced posttranscriptionally in trans by the sRNA255 family of endogenous, noncoding, small interfering RNAs (siRNAs). The increase in At5g18040 mRNA in SGS3 and SGS2/SDE1/RDR6 mutants is attributable to the absence of sRNA255-like siRNAs in these mutants. These results demonstrate a role for endogenous siRNAs in the regulation of gene expression, and suggest that PTGS plays a central role in the temporal control of shoot development in plants.

Citing Articles

Citrus tristeza virus p20 suppresses antiviral RNA silencing by co-opting autophagy-related protein 8 to mediate the autophagic degradation of SGS3.

Zhang Y, Yang Z, Zhang Z, Wang G, Li X, Hong N PLoS Pathog. 2025; 21(2):e1012960.

PMID: 39993018 PMC: 11882097. DOI: 10.1371/journal.ppat.1012960.


-dependent trans-acting siRNAs regulate leaf and lemma development in rice.

Tang J, Li T, Gao Y, Li X, Huang Z, Zhuang H Front Plant Sci. 2025; 15:1534038.

PMID: 39931337 PMC: 11808002. DOI: 10.3389/fpls.2024.1534038.


Non-coding RNA notations, regulations and interactive resources.

Cheng M, Zhu Y, Yu H, Shao L, Zhang Y, Li L Funct Integr Genomics. 2024; 24(6):217.

PMID: 39557706 DOI: 10.1007/s10142-024-01494-w.


The biogenesis, regulation and functions of transitive siRNA in plants.

Tan H, Liu Y, Guo H Acta Biochim Biophys Sin (Shanghai). 2024; 57(1):131-147.

PMID: 39376148 PMC: 11802348. DOI: 10.3724/abbs.2024160.


GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation.

Tang Q, Xu D, Lenzen B, Brachmann A, Yapa M, Doroodian P Plant Commun. 2024; 5(12):101069.

PMID: 39169625 PMC: 11671767. DOI: 10.1016/j.xplc.2024.101069.


References
1.
Lee R, Ambros V . An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001; 294(5543):862-4. DOI: 10.1126/science.1065329. View

2.
Shiu P, Metzenberg R . Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics. 2002; 161(4):1483-95. PMC: 1462203. DOI: 10.1093/genetics/161.4.1483. View

3.
Klahre U, Crete P, Leuenberger S, Iglesias V, Meins Jr F . High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci U S A. 2002; 99(18):11981-6. PMC: 129380. DOI: 10.1073/pnas.182204199. View

4.
Tsukaya H, Shoda K, Kim G, Uchimiya H . Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta. 2000; 210(4):536-42. DOI: 10.1007/s004250050042. View

5.
Boutet S, Vazquez F, Liu J, Beclin C, Fagard M, Gratias A . Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol. 2003; 13(10):843-8. PMC: 5137371. DOI: 10.1016/s0960-9822(03)00293-8. View