» Articles » PMID: 18274615

FMRI Brain-computer Interface: a Tool for Neuroscientific Research and Treatment

Overview
Specialty Biology
Date 2008 Feb 16
PMID 18274615
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment.

Citing Articles

Objective Pain Assessment Using Deep Learning Through EEG-Based Brain-Computer Interfaces.

Al-Nafjan A, Alshehri H, Aldayel M Biology (Basel). 2025; 14(2).

PMID: 40001978 PMC: 11851851. DOI: 10.3390/biology14020210.


Decoding Pain: A Comprehensive Review of Computational Intelligence Methods in Electroencephalography-Based Brain-Computer Interfaces.

Alshehri H, Al-Nafjan A, Aldayel M Diagnostics (Basel). 2025; 15(3).

PMID: 39941230 PMC: 11816796. DOI: 10.3390/diagnostics15030300.


Cognitive workload estimation using physiological measures: a review.

Das Chakladar D, Roy P Cogn Neurodyn. 2024; 18(4):1445-1465.

PMID: 39104683 PMC: 11297869. DOI: 10.1007/s11571-023-10051-3.


Unleashing the potential of fNIRS with machine learning: classification of fine anatomical movements to empower future brain-computer interface.

Khan H, Khadka R, Sultan M, Yazidi A, Ombao H, Mirtaheri P Front Hum Neurosci. 2024; 18:1354143.

PMID: 38435744 PMC: 10904609. DOI: 10.3389/fnhum.2024.1354143.


Source-Based EEG Neurofeedback for Sustained Motor Imagery of a Single Leg.

Zulauf-Czaja A, Osuagwu B, Vuckovic A Sensors (Basel). 2023; 23(12).

PMID: 37420769 PMC: 10301779. DOI: 10.3390/s23125601.


References
1.
LeDoux J . The emotional brain, fear, and the amygdala. Cell Mol Neurobiol. 2003; 23(4-5):727-38. PMC: 11530156. DOI: 10.1023/a:1025048802629. View

2.
Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, Konig M, Froscher W . Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia. 2001; 42(3):406-16. DOI: 10.1046/j.1528-1157.2001.22200.x. View

3.
Blair R . Neurobiological basis of psychopathy. Br J Psychiatry. 2003; 182:5-7. DOI: 10.1192/bjp.182.1.5. View

4.
Christopher deCharms R, Christoff K, Glover G, Pauly J, Whitfield S, Gabrieli J . Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage. 2004; 21(1):436-43. DOI: 10.1016/j.neuroimage.2003.08.041. View

5.
Brennan P, Raine A . Biosocial bases of antisocial behavior: psychophysiological, neurological, and cognitive factors. Clin Psychol Rev. 1997; 17(6):589-604. DOI: 10.1016/s0272-7358(97)00036-6. View