» Articles » PMID: 35203991

FMRI Brain Decoding and Its Applications in Brain-Computer Interface: A Survey

Overview
Journal Brain Sci
Publisher MDPI
Date 2022 Feb 25
PMID 35203991
Authors
Affiliations
Soon will be listed here.
Abstract

Brain neural activity decoding is an important branch of neuroscience research and a key technology for the brain-computer interface (BCI). Researchers initially developed simple linear models and machine learning algorithms to classify and recognize brain activities. With the great success of deep learning on image recognition and generation, deep neural networks (DNN) have been engaged in reconstructing visual stimuli from human brain activity via functional magnetic resonance imaging (fMRI). In this paper, we reviewed the brain activity decoding models based on machine learning and deep learning algorithms. Specifically, we focused on current brain activity decoding models with high attention: variational auto-encoder (VAE), generative confrontation network (GAN), and the graph convolutional network (GCN). Furthermore, brain neural-activity-decoding-enabled fMRI-based BCI applications in mental and psychological disease treatment are presented to illustrate the positive correlation between brain decoding and BCI. Finally, existing challenges and future research directions are addressed.

Citing Articles

Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations.

Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H Diagnostics (Basel). 2025; 15(4).

PMID: 40002607 PMC: 11854508. DOI: 10.3390/diagnostics15040456.


Electroencephalography-Based Brain-Computer Interfaces in Rehabilitation: A Bibliometric Analysis (2013-2023).

Angulo Medina A, Aguilar Bonilla M, Rodriguez Giraldo I, Montenegro Palacios J, Caceres Gutierrez D, Liscano Y Sensors (Basel). 2024; 24(22).

PMID: 39598903 PMC: 11598414. DOI: 10.3390/s24227125.


Unique Cortical and Subcortical Activation Patterns for Different Conspecific Calls in Marmosets.

Jafari A, Dureux A, Zanini A, Menon R, Gilbert K, Everling S J Neurosci. 2024; 45(3.

PMID: 39516045 PMC: 11735661. DOI: 10.1523/JNEUROSCI.0670-24.2024.


Natural Image Reconstruction from fMRI Based on Node-Edge Interaction and Multi-Scale Constraint.

Kuang M, Zhan Z, Gao S Brain Sci. 2024; 14(3).

PMID: 38539622 PMC: 10968908. DOI: 10.3390/brainsci14030234.


Decoding Visual fMRI Stimuli from Human Brain Based on Graph Convolutional Neural Network.

Meng L, Ge K Brain Sci. 2022; 12(10).

PMID: 36291327 PMC: 9599823. DOI: 10.3390/brainsci12101394.

References
1.
Zotev V, Krueger F, Phillips R, Alvarez R, Simmons W, Bellgowan P . Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One. 2011; 6(9):e24522. PMC: 3169601. DOI: 10.1371/journal.pone.0024522. View

2.
Huth A, Nishimoto S, Vu A, Gallant J . A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron. 2012; 76(6):1210-24. PMC: 3556488. DOI: 10.1016/j.neuron.2012.10.014. View

3.
Engel S, Glover G, Wandell B . Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997; 7(2):181-92. DOI: 10.1093/cercor/7.2.181. View

4.
Birbaumer N, Veit R, Lotze M, Erb M, Hermann C, Grodd W . Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2005; 62(7):799-805. DOI: 10.1001/archpsyc.62.7.799. View

5.
Mohanty R, Sinha A, Remsik A, Dodd K, Young B, Jacobson T . Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity. Front Neurosci. 2018; 12:353. PMC: 5986965. DOI: 10.3389/fnins.2018.00353. View