Jangir G, Joshi N, Purohit G
Brain Inform. 2025; 12(1):5.
PMID: 39954182
PMC: 11829870.
DOI: 10.1186/s40708-025-00250-5.
D J, C S
PLoS One. 2025; 20(1):e0311942.
PMID: 39820611
PMC: 11737786.
DOI: 10.1371/journal.pone.0311942.
Zybailov B, Kosovsky G, Glazko G, Glazko V, Skobel O
Acta Naturae. 2024; 16(3):4-17.
PMID: 39539525
PMC: 11557214.
DOI: 10.32607/actanaturae.27406.
Xu S, Liu Y, Lee H, Li W
Exploration (Beijing). 2024; 4(5):20230146.
PMID: 39439491
PMC: 11491314.
DOI: 10.1002/EXP.20230146.
Chen Y, Wang F, Li T, Zhao L, Gong A, Nan W
Front Neurosci. 2024; 18:1449208.
PMID: 39161655
PMC: 11330831.
DOI: 10.3389/fnins.2024.1449208.
Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290].
Lam D, Javadekar A, Patil N, Yu M, Li L, Menendez D
Acta Biomater. 2024; 182:303-308.
PMID: 38845260
PMC: 11295673.
DOI: 10.1016/j.actbio.2024.05.039.
Machine learning-based high-frequency neuronal spike reconstruction from low-frequency and low-sampling-rate recordings.
Hong N, Kim B, Lee J, Choe H, Jin K, Kang H
Nat Commun. 2024; 15(1):635.
PMID: 38245509
PMC: 10799928.
DOI: 10.1038/s41467-024-44794-2.
On pharmacological neuroenhancement as part of the new neurorights' pioneering legislation in Chile: a perspective.
Cornejo-Plaza M, Saracini C
Front Psychol. 2023; 14:1177720.
PMID: 37533709
PMC: 10393253.
DOI: 10.3389/fpsyg.2023.1177720.
Partial maximum correntropy regression for robust electrocorticography decoding.
Li Y, Chen B, Wang G, Yoshimura N, Koike Y
Front Neurosci. 2023; 17:1213035.
PMID: 37457015
PMC: 10347400.
DOI: 10.3389/fnins.2023.1213035.
Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm.
Du Y, Sui J, Wang S, Fu R, Jia C
Med Biol Eng Comput. 2023; 61(10):2665-2676.
PMID: 37421553
DOI: 10.1007/s11517-023-02878-z.
Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes.
Lam D, Javadekar A, Patil N, Yu M, Li L, Menendez D
Acta Biomater. 2023; 166:278-290.
PMID: 37211307
PMC: 10330779.
DOI: 10.1016/j.actbio.2023.05.004.
Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing.
Karbalaei Akbari M, Siraj Lopa N, Shahriari M, Najafzadehkhoee A, Galusek D, Zhuiykov S
J Funct Biomater. 2023; 14(1).
PMID: 36662082
PMC: 9863167.
DOI: 10.3390/jfb14010035.
Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface.
Kapgate D
Med Biol Eng Comput. 2022; 60(11):3243-3254.
PMID: 36151487
DOI: 10.1007/s11517-022-02675-0.
Microelectrode implants, inflammatory response and long-lasting effects on NADPH diaphorase neurons in the rat frontal cortex.
Guimaraes J, Lemos N, Freire M, Pereira A, Ribeiro S
Exp Brain Res. 2022; 240(10):2569-2580.
PMID: 35947168
DOI: 10.1007/s00221-022-06434-3.
Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces.
Plucknett W, Sanchez Giraldo L, Bae J
Front Hum Neurosci. 2022; 16:902183.
PMID: 35845246
PMC: 9283905.
DOI: 10.3389/fnhum.2022.902183.
A Platform for Spatiotemporal "Matrix" Stimulation in Brain Networks Reveals Novel Forms of Circuit Plasticity.
Wilson N, Wang F, Chen N, Yan S, Daitch A, Shi B
Front Neural Circuits. 2022; 15:792228.
PMID: 35069127
PMC: 8766665.
DOI: 10.3389/fncir.2021.792228.
Sense of agency for intracortical brain-machine interfaces.
Serino A, Bockbrader M, Bertoni T, Colachis Iv S, Solca M, Dunlap C
Nat Hum Behav. 2022; 6(4):565-578.
PMID: 35046522
DOI: 10.1038/s41562-021-01233-2.
An FPGA-Embedded Brain-Computer Interface System to Support Individual Autonomy in Locked-In Individuals.
Palumbo A, Ielpo N, Calabrese B
Sensors (Basel). 2022; 22(1).
PMID: 35009860
PMC: 8749705.
DOI: 10.3390/s22010318.
A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size.
She X, Berger T, Song D
Neural Comput. 2021; 34(1):219-254.
PMID: 34758485
PMC: 9470026.
DOI: 10.1162/neco_a_01459.
3D Particle Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording.
Wang C, Rubakhin S, Enright M, Sweedler J, Nuzzo R
Adv Funct Mater. 2021; 31(14).
PMID: 34305503
PMC: 8297588.
DOI: 10.1002/adfm.202010246.