» Articles » PMID: 15907293

Support Vector Machines for Temporal Classification of Block Design FMRI Data

Overview
Journal Neuroimage
Specialty Radiology
Date 2005 May 24
PMID 15907293
Citations 151
Authors
Affiliations
Soon will be listed here.
Abstract

This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 10-27; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D. 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection.

Citing Articles

Causality-based Subject and Task Fingerprints using fMRI Time-series Data.

Song D, Shen L, Duong-Tran D, Wang X ACM BCB. 2025; 2024.

PMID: 39897336 PMC: 11786950. DOI: 10.1145/3698587.3701342.


Longitudinal accelerated brain age in mild cognitive impairment and Alzheimer's disease.

Ly M, Yu G, Son S, Pascoal T, Karim H Front Aging Neurosci. 2024; 16:1433426.

PMID: 39503045 PMC: 11534682. DOI: 10.3389/fnagi.2024.1433426.


Brain Age Is Not a Significant Predictor of Relapse Risk in Late-Life Depression.

Karim H, Gerlach A, Butters M, Krafty R, Boyd B, Banihashemi L Biol Psychiatry Cogn Neurosci Neuroimaging. 2024; 10(1):103-110.

PMID: 39349179 PMC: 11710984. DOI: 10.1016/j.bpsc.2024.09.009.


Reinforcement learning processes as forecasters of depression remission.

Bansal V, McCurry K, Lisinski J, Kim D, Goyal S, Wang J J Affect Disord. 2024; 368:829-837.

PMID: 39271064 PMC: 11573115. DOI: 10.1016/j.jad.2024.09.066.


Motor Intentions Decoded from fMRI Signals.

Ruiz S, Lee S, Dalboni da Rocha J, Ramos-Murguialday A, Pasqualotto E, Soares E Brain Sci. 2024; 14(7).

PMID: 39061384 PMC: 11274965. DOI: 10.3390/brainsci14070643.