» Articles » PMID: 18054249

Applications of Direct Detection Device in Transmission Electron Microscopy

Overview
Journal J Struct Biol
Date 2007 Dec 7
PMID 18054249
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

A prototype direct detection device (DDD) camera system has shown great promise in improving both the spatial resolution and the signal to noise ratio for electron microscopy at 120-400 keV beam energies (Xuong et al., 2007. Methods in Cell Biology, 79, 721-739). Without the need for a resolution-limiting scintillation screen as in the charge coupled device (CCD), the DDD camera can outperform CCD based systems in terms of spatial resolution, due to its small pixel size (5 microm). In this paper, the modulation transfer function (MTF) of the DDD prototype is measured and compared with the specifications of commercial scientific CCD camera systems. Combining the fast speed of the DDD with image mosaic techniques, fast wide-area imaging is now possible. In this paper, the first large area mosaic image and the first tomography dataset from the DDD camera are presented, along with an image processing algorithm to correct the specimen drift utilizing the fast readout of the DDD system.

Citing Articles

Bulk and local structures of metal-organic frameworks unravelled by high-resolution electron microscopy.

Liu L, Zhang D, Zhu Y, Han Y Commun Chem. 2023; 3(1):99.

PMID: 36703329 PMC: 9814830. DOI: 10.1038/s42004-020-00361-6.


Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination.

Xue H, Zhang M, Liu J, Wang J, Ren G Front Chem. 2022; 10:889203.

PMID: 36110139 PMC: 9468540. DOI: 10.3389/fchem.2022.889203.


Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films.

Castano I, Evans A, Reis R, Dravid V, Gianneschi N, Dichtel W Chem Mater. 2022; 33(4):1341-1352.

PMID: 35296112 PMC: 8922717. DOI: 10.1021/acs.chemmater.0c04382.


Elemental mapping of labelled biological specimens at intermediate energy loss in an energy-filtered TEM acquired using a direct detection device.

Ramachandra R, Mackey M, Hu J, Peltier S, Xuong N, Ellisman M J Microsc. 2021; 283(2):127-144.

PMID: 33844293 PMC: 8316382. DOI: 10.1111/jmi.13014.


Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus.

Liu W, Cui Y, Wang C, Li Z, Gong D, Dai X Nat Microbiol. 2020; 5(10):1285-1298.

PMID: 32719506 PMC: 7546529. DOI: 10.1038/s41564-020-0758-1.


References
1.
Xuong N, Jin L, Kleinfelder S, Li S, Leblanc P, Duttweiler F . Future directions for camera systems in electron microscopy. Methods Cell Biol. 2007; 79:721-39. DOI: 10.1016/S0091-679X(06)79028-8. View

2.
Meyer R, Kirkland A . Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech. 2000; 49(3):269-80. DOI: 10.1002/(SICI)1097-0029(20000501)49:3<269::AID-JEMT5>3.0.CO;2-B. View

3.
Buhr E, Gunther-Kohfahl S, Neitzel U . Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med Phys. 2003; 30(9):2323-31. DOI: 10.1118/1.1598673. View

4.
Kremer J, Mastronarde D, McIntosh J . Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996; 116(1):71-6. DOI: 10.1006/jsbi.1996.0013. View

5.
Milazzo A, Leblanc P, Duttweiler F, Jin L, Bouwer J, Peltier S . Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy. 2005; 104(2):152-9. DOI: 10.1016/j.ultramic.2005.03.006. View